Impossibility
Results:
CAP, PRAM, SNOW, & FLP
AN

COS 418/518: (Advanced) Distributed Systems
Lecture 18

Mike Freedman & Wyatt Lloyd

Network Partitions Divide Systems

e
v
~

Network Partitions Divide Systems

0
\ > 1.
A \

¢

How Can We Handle Partitions?

» Atomic Multicast?
* Bayou?

* Dynamo?

» Paxos?

* RAFT?

» COPS?

* Spanner?

12/2/19

How About This Set of
Partitions?

Fundamental Tradeoff?

* Replicas appear to be a ,

but during a network partition
*OR
* All replicas during a network

partition but

CAP Theorem Preview

* You cannot achieve all three of:
1. Consistency
2. Availability
3. Partition-Tolerance

* Partition Tolerance => Partitions Can Happen
* Availability => All Sides of Partition Continue

» Consistency => Replicas Act Like Single Machine
* Specifically,

Linearizability (refresher)
* All replicas execute operations in total order

* That total order preserves the
between operations
* If operation A before operation B ,
then A is ordered before B in real-time

« If neither A nor B completes before the other begins,
then there is no real-time order
* (But there must be some total order)

12/2/19

CAP Conjecture [Brewer 00]

* From keynote lecture by Eric Brewer (2000)

* History: Eric started Inktomi, early Internet search site
based around “commodity” clusters of computers

» Using CAP to justify “BASE” model: Basically
Available, Soft-state services with Eventual
consistency

* Popular interpretation: 2-out-of-3
* Consistency (Linearizability)
+ Availability
* Partition Tolerance: Arbitrary crash/network failures

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

- @ RN

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP
w(x=1) :
Client 1 - Clien
—# |

/

Write eventually returns
(from A)

Partition Possible (from P)

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP
w(x=1) ~ 1(x)
Client1 |z Client 2
o g =

/

Write eventually returns
(from A)

\ Read begins after write completes
1 Read eventually returns (from A)

Partition Possible (from P)

12/2/19

CAP Theorem [Gilbert Lynch 02]

Assume to contradict that Algorithm A provides all of CAP

Not consistent (C) => contradiction! ll
wix=1) - = r(x)
o L e
ok e ~ 9 x=0

Write eventually returns

(from A)

R Read begins after write completes
T Read eventually returns (from A)

Partition Possible (from P)

CAP Interpretation Part 1

» Cannot “choose” no partitions

» 2-out-of-3 interpretation doesn’t make sense
+ Instead, availability OR consistency?

* i.e., fundamental tradeoff between availability and
consistency

* When designing system must choose one or the other,
both are not possible

CAP Interpretation Part 2
* It is a theorem, with a proof, that you understand!
« Cannot “beat” CAP Theorem

» Can engineer systems to make partitions
extremely rare, however, and then just take the
rare hit to availability (or consistency)

Consistency Hierarchy

Strict Serializability e.g., Spanner
Linearizability e.g., RAFT

Sequential Consistency

Causal+ Consistency e.g., Bayou

Eventual Consistency e.g., Dynamo

12/2/19

Impossibility Results Useful!!!!

» Fundamental tradeoff in design space
» Must make a choice

* Avoids wasting effort trying to achieve the
impossible

* Tells us the best-possible systems we can build!

PRAM [Lipton Sandberg 88] [Attiya Welch 94]

« d is the worst-case delay in the network over all pairs
of processes [datacenters]

» Sequentially consistent system
* read time + write time = d

* Fundamental tradeoff between consistency and
latency!

* (Skipping proof, see presenter notes or papers)

PRAM Theorem:

Impossible for sequentially consistent
system to always provide low latency.

Consistency Hierarchy

Strict Serializability e.g., Spanner
Linearizability e.g., RAFT

Sequential Consistency

Causal+ Consistency e.g., Bayou

Eventual Consistency e.g., Dynamo

12/2/19

Sharding vs. Replication

The SNOW Theorem [Lu et al. 2016]

* Focus on read-only transactions

* Are the ‘ideal’ read-only transaction possible?
* Provide the strongest guarantees
« AND
* Provide the lowest possible latency?

*No ®

CAP
Replication Dimension
<o C© O
Sharding OO C© D>
Dimension < T MR MR)
S © >
The SNOW Properties
[S]trict serializability
Strongest
[N]Jon-blocking operations Guarantees
[O]ne response per read
))) Lowest
[W]rite transactions that conflict Latency

23

[S]trict Serializability

» Strongest model: real-time + total order

G2 Si Serao
< | —

R starts = >
R finishes — %=
v

i L — W starts
- Private]
“Photo B is {ACL := Private
. »
private! Photo B Upload Photo B

[— W finishes

24

12/2/19

[S]trict Serializability

+ Strongest model: real-time + total order

R starts =
ACL := Private

Upload Photo B

“Public + Photo A”
“Photo B is private!”

“PubliGiPhoto B” Private

“Photg A'is private!”

= W finishes
R finishes —

25

[N]Jon-blocking Operations

* Do not wait on external events
» Locks, timeouts, messages, etc.

* Lower latency
« Save the time spent blocking

26

[O]ne Response

* One round-trip
* No message redirection
» Centralized components: coordinator, etc.
* No retries
 Save the time for extra round-trips

* One value per response
* Less time for transmitting, marshaling, etc.

27

[W]rite Transactions That Conflict

» Compatible with write transactions
* Richer system model
« Easier to program

* Spanner has W
« COPS does not have W

28

12/2/19

The SNOW Theorem:

Impossible for read-only transaction
algorithms to have all SNOW properties

Must choose strongest guarantees OR
lowest latency for read-only transactions

29

Why SNOW Is Impossible [ntuition]

G s S Gy

Assume | W starts
snow 2R A := new
B := new
Violates
property S
W finishes

30

SNOW Is Tight
S S+N+O: COPS-DW
N S+N+W: Eiger
(o) S+0+W: Spanner-RO
w N+O+W: Spanner-Snap

Spanner’s read-only transaction
interfaces provide both sides of tradeoff!

31

Consistency Hierarchy

Strict Serializability e.g., Spanner
Linearizability e.g., RAFT

Sequential Consistency

Causal+ Consistency e.g., Bayou

Eventual Consistency e.g., Dynamo

12/2/19

Impossibility of Distributed Consensus with One Faulty

11 L1) Process
I L I MICHAEL J. FISCHER
Yale tn faven Connecicut
A

No deterministic
1-crash-robust .
consensus

algorithm exists

with asynchronous
communication

FLP is the original impossibility
result for distributed systems!

» Useful interpretation: no consensus
algorithm can always reach consensus
with an asynchronous network
— Do not believe such claims!

* Led to lots and lots of theoretical work

— (Consensus is possible when the network is
reasonably well-behaved)

Conclusion

Impossibility results tell you choices you must
make in the design of your systems

CAP: Fundamental tradeoff between availability
and strong consistency (for replication)

PRAM: Fundamental tradeoff between latency
and strong consistency (for replication)

SNOW: Fundamental tradeoff between latency
and strong guarantees (for sharding)

12/2/19

