Consistency Models

COS 418/518: (Advanced) Distributed Systems
Lecture 13

Michael Freedman & Wyatt Lloyd

Consistency Models

- Contract between a distributed system and the applications that run on it
- A consistency model is a set of guarantees made by the distributed system

Linearizability

- All replicas execute operations in some total order
- That total order preserves the real-time ordering between operations
 - If operation A completes before operation B begins, then A is ordered before B in real-time
 - If neither A nor B completes before the other begins, then there is no real-time order
 - · (But there must be some total order)

Real-Time Ordering Examples

Linearizable?

Linearizable?

Linearizable?

Linearizable?

Linearizability == "Appears to be a Single Machine"

- Single machine processes requests one by one in the order it receives them
 - · Will receive requests ordered by real-time in that order
 - · Will receive all requests in some order
- Atomic Multicast, Viewstamped Replication, Paxos, and RAFT provide Linearizability
- Single machine processing incoming requests one at a time also provide Linearizability ©

Linearizability is Ideal?

- Hides the complexity of the underlying distributed system from applications!
 - Easier to write applications
 - · Easier to write correct applications
- But, performance trade-offs

Stronger vs Weaker Consistency

- Stronger consistency models
 - + Easier to write applications
 - More guarantees for the system to ensure Results in performance tradeoffs
- · Weaker consistency models
 - Harder to write applications
 - + Fewer guarantees for the system to ensure

Strictly Stronger Consistency

- A consistency model A is strictly stronger than B if it allows a strict subset of the behaviors of B
 - · Guarantees are strictly stronger

Sequential Consistency

- All replicas execute operations in some total order
- That total order preserves the process ordering between operations
 - If process P issues operation A before operation B, then A is order before B by the process order
 - If operations A and B and done by different processes then there is no process order between them
 - (But there must be some total order)

Sequential Consistency ≈ "Appears to be a Single Machine"

- Single machine processes requests one by one in the order it receives them
 - Will receive requests ordered by process order in that order
 - · Will receive all requests in some order

Linearizability is strictly stronger than Sequential Consistency

- Linearizability: ∃total order + real-time ordering
- Sequential: ∃total order + process ordering
 - Process ordering ⊆ Real-time ordering

Sequential But Not Linearizable

Consistency Hierarchy

Causal+ Consistency

- · Partially orders all operations, does not totally order them
 - · Does not look like a single machine
- Guarantees
 - For each process, \exists an order of all writes + that process's reads
 - Order respects the happens-before (→) ordering of operations
 - · + replicas converge to the same state
 - · Skip details, makes it stronger than eventual consistency

Causal Consistency

- Writes that are potentially causally related must be seen by all processes in same order.
- 2. Concurrent writes may be seen in a different order on different processes.
- Concurrent: Ops not causally related

Causal Consistency

- Writes that are potentially causally related must be seen by all processes in same order.
- 2. Concurrent writes may be seen in a different order on different processes.
- Concurrent: Ops not causally related

Consistency Hierarchy

Causal Consistency: Quiz

- · Valid under causal consistency
- Why? x=3 and x=2 are concurrent
 - · So all processes don't (need to) see them in same order
- P_C and P_D read the values '1' and '2' in order as potentially causally related. No 'causality' for '3'.

Sequential Consistency: Quiz

- Invalid under sequential consistency
- Why? Pc and Pp see 2 and 3 in different order
- · But fine for causal consistency
 - · 2 and 3 are not causally related

Causal Consistency

X x=2 happens after x=1

Causal Consistency

√ P_B doesn't read value of 1 before writing 2