Distributed Systems Intro
and Course Overview
COS 418 + 518: (Advanced) Distributed Systems

Lecture 1

Mike Freedman & Wyatt Lloyd

Distributed Systems, What?

1) Multiple computers
2) Connected by a network
3) Doing something together

Distributed Systems, Why?

* Or, why not 1 computer to rule them all?
* Failure
* Limited computation/storage/...

* Physical location

Distributed Systems, Where?

* Web Search (e.g., Google, Bing)
Shopping (e.g., Amazon, Walmart)

File Sync (e.g., Dropbox, iCloud)
Social Networks (e.g., Facebook, Twitter)

* Music (e.g., Spotify, Apple Music)
Ride Sharing (e.g., Uber, Lyft)

+ Video (e.g., Youtube, Netflix)

* Online gaming (e.g., Fortnite, DOTA2)

9/11/19

“The Cloud” is not amorphous

AR

\

=

i

en

9/11/19

100;000s of physical servers
10s MW energy consumptions:

Facebook Prineville:)
$250M physical infro, $1B/IT infra]

‘
: ;

1l

Everything changes at scale

“Pods provide 7.68Tbps to backplane”

9/11/19

Distributed Systems Goal

« Service with higher-level abstractions/interface
* e.g., file system, database, key-value store, programming
model, ...

* Hide complexity
* Scalable (scale-out)
* Reliable (fault-tolerant)
» Well-defined semantics (consistent)

* Do “heavy lifting” so app developer doesn’t need to

Decisions matter: Layering & Naming

* Abstractions everywhere: Layers partition the system
* Each layer solely relies on services from layer below
* Each layer solely exports services to layer above

* Interface between layers defines interaction
* Hides implementation details
* Layers can change without disturbing other layers

Decisions matter: Layering & Naming

» Host names: www.cs.princeton.edu
* Mnemonic, variable-length, appreciated by humans
* Hierarchical, based on organizations

* IP addresses: 128.112.7.156
* Numerical 32-bit address appreciated by routers
* Hierarchical, based on organizations and topology

* MAC addresses : 00-15-C5-49-04-A9
» Numerical 48-bit address appreciated by adapters
* Non-hierarchical, unrelated to network topology

Decisions matter: Layering & Naming

* Host names: www.cs.princeton.edu
» Domain: registrar for each top-level domain (eg, .edu)
* Host name: local administrator assigns to each host

* IP addresses: 128.112.7.156
+ Prefixes: ICANN, regional Internet registries, and ISPs
* Hosts: static configuration, or dynamic using DHCP

* MAC addresses: 00-15-C5-49-04-A9
* Blocks: assigned to vendors by the IEEE
» Adapters: assigned by the vendor from its block

9/11/19

9/11/19

Research results matter: NoSQL Research results matter: Paxos

sribu Dy A 's Highly i Key-value Store
Dwid kel Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall
and Wemer Vogels
Amazon.com
ABSTRACT One ofthe lesons our ngasiza
e t Ao o, oo of e et & corsoets opérons i e The Chubby lock service for loosely-coupled distributed systems
ol Sighcs, ounge b e foancial]
e s ot . e e s e ot e s g e
i, vk pvis services i g b shos ek e, comers shodd be = S Mike Burrows, Google Inc. -
v and nevork. componss ocated n many s ;","“ 2 0 s o i shopping can oven if s we bl s =
o e v sl sl e o 61 8 L lagpig, o dus comers we beiog
Continsoualy and th ey n the fce e
oF b T vt ety nd ey of the by e
oftvare e o o
> . Abstract cxmple, e GoogeFl Sy 7] e by bck =
e] 2 GFS. master server, and Bigtable [3] uses oy
ervices e 1o provde an “ahwayvon experene. To We dosribe our expeicnces withthe Chubbylockser- S 8 00, WO R0, S BRI
cieve this lve o svaabily, Dynamo swrifcc conency vice, which is imtended 10 provide commo-grained lock- oporr' giocover the servers it controls, and 10 permit o cn
censin . makes exicnive ing a5 wel as reliabe (though low-volume) storage for oo s
e R in s mamer by dede it sysem. Coubby peoidey clcnts 1o find the mastr. In addition, both GFS and T
that provides novel iterfhce fo developersto ““‘“"' e e i i by foosely-coupled distributod Bigtablc usc Chubby as a well-known and available loca on
pertom nimerfce much ke o dsributed ke sysem with od- ¢ 20C S Y 88 SO RS b cour
Catsgoris and Subject Deeriptors To meet the rlaiity nd scaing nods, Az cioped visory locks, but the design emphasis is on availability ooy as the oot of their distributed data struc- s o
D42 (Operatig S Namgement; D 45 mbe of e g, o wic s Az Saie and reliability, s opposed to high performance. Many = TG B S e work (at & Lo
o instances of the service have been used for over & year, pert
ormance, A .,:f' “lm.ym:’umr;;ﬂmrmw i el of o cach hanling o fow s of . €08 rin) between sveral serves.
General Terms frary v i34 sands of clicnts concurratly. The paper describes the Before Chubby was deployed. most distributed sys- =1
Ao, iaageven, Mssenen Petomance, DS, Dy s sed o e o st of st e vy e . iy tems at Google used ad hoc methods for primary elec- ooz

Research results matter: MapReduce

hadmmp

MapReduce: Simplified Data Processing on Large Clusters ‘AZ

P — Spor’(

@ google com. sanjy @ gge com

Google, Inc.

e SESETES %k‘"k“ Course Organization
i e Flink

Valucs asociated with the same intermediate key. Many

real workd tasks are expressbie in this model, a5 shown,

taion with largs asmounts of cumplex code o dal with
these issues
‘As 8 reaction o this complexiy, we designed 3 new

moxdity machines. The run-ime sysiem takes care o the
details of partitoning the it dat, schedulin the pro-
hand

tals of paralelzation, faukt-tolerance, data distibution
and load balancing in a libeay. Our sbstraction s o

chine failures, and managing the requird inter-machive:
communication. This allows programumers without any.
experience with paralll and distributed systems (o cas

spired by
and many other functional langusges. We realzed that

Our implementation of MapRed:
clustr of commodity hmnn»mgm-,u!wk
a typical MapReduce computation processes

pping e cprion il e vl that shared
ame key, in orde 10 combine the derived data 2p-
ol Ou o s e o0l i o

s distributed stream
computing platform

é:) STORM

Course structure
+ Joint ugrad (418) + grad (518) course: first of kind

* Why / how do they differ?
* 418 + 518: Both attend same lectures. Everybody
needs background, few get it elsewhere

* 418
» Precepts (review/understanding material), TA led
* Programming assignments

* 518:
* Recitations (paper reading + discussion), faculty led
» Semester-long project

Learning the material: People

* Professors Mike Freedman & Wyatt Lloyd

» Teaching Assistants: Carlo Rosati, Jeffrey Helt,
Jennifer Lam, Suriya Kodeswaran, Yue Tan

» Lab Assistants (for programming assignments)

* Main Q&A forum: www.piazza.com
* No anonymous posts or questions, can DM instructors
« Office hours (TAs and LAs) posted on Piazza
« Setting expectation: TAs will monitor/respond to Piazza 1-
2 times per day in a burst of activity

Learning the Material: Lectures!

» Lectures: MW 10-10:50 in CS 104

* Attend lectures and precepts and take notes!
* Lecture slides posted day/night before
* Recommendation: Print slides & take notes
* Not everything covered in class is on slides
* You are responsible for everything covered in class

* No required textbooks

* Links to Go Programming textbook and two other
distributed systems textbooks on website

418 specifics

9/11/19

http://www.piazza.com/

Grading

* Five assignments (10% each)
* 90% 24 hours late, 80% 2 days late, 50% >5 days late
* Three free late days (we’ll figure which one is best)

» Two exams (50% total)
» Midterm exam before fall recess (25%)
* Final exam during exam period (25%)

Weekly recitations (Friday)

» Supporting materials for class
» Go programming
* Problem solving around lecture topics
* Things to think about for assignments

» Taught by TAs (rotation on weekly basis)

Assignment 1 (in three parts)

* Learn how to program in Go
* Basic Go assignment (due 9/19)
» “Sequential” Map Reduce (due 9/26)
* Distributed Map Reduce (due 10/03)

Warnings

This is a 400-level course,
with expectations to match.

9/11/19

Warning #1:
Assignments are a LOT of work

» Assignment 1 is purposely easy to teach Go. Don’t be fooled.

« Last year they gave 3-4 weeks for later assignments;
many students started 3-4 days before deadline. Disaster.
* Distributed systems are hard
* Need to understand problem and protocol, carefully design
» Can take 5x more time to debug than “initially program”

» Assignment #4 builds on your Assignment #3 solution, i.e., you
can’t do #4 until your own #3 is working! (That’s the real world!)

Warning #2:

Software engineering, not just programming

*+ COS126, 217, 226 told you how to design & structure
your programs. This class doesn’t.

» Real software engineering projects don’t either.

* You need to learn to do it.

« If your system isn’t designed well, can be
significantly harder to get right.

* Your friend: test-driven development. We’ll supply
tests, bonus points for adding new ones

Warning #3:
Don’t expect 24x7 answers Go gle

* Try to figure out yourself
* Piazza not designed for debugging

« Utilize right venue: Go to office hours (TAs or LAs)

» Send detailed Q’s / bug reports, not “no idea what’s wrong”
* Instructors are not on pager duty 24 x 7

» Don’t expect response before next business day

* Questions Friday night @ 11pm should not expect fast

responses. Be happy with something before Monday.

* Implications

« Students should answer each other (+ it’s worth credit)

« Start your assignments early!

Policy: Write Your Own Code

Programming is an individual creative process. At first, discussions

with friends is fine. When writing code, however, the program
must be your own work.

Do not copy another person’s programs, comments, or any part of

submitted assignment. This includes character-by-character

transliteration but also derivative works. Cannot use another’s

code, etc. even while “citing” them.

Writing code for use by another or using another’s code is
academic fraud in context of coursework.

Do not publish your code e.g., on github, during/after course!

9/11/19

Policy: Write Your Own Code

518 specifics

Grading
» Semester-long project (40% total)
* Recitation participation (30% total

* Two exams (30% total)
» Midterm exam before fall recess (15%)

* Final exam during exam period (15%)

* Mostly same midterm/final as 418, without Go/programming
assignment related questions.

Recitations / paper readings

» One paper that everybody reads
» Discuss paper at length in recitation
* Be prepared: We’ll cold-call students!

* Friday recitations: 1:30 - 2:30, 2:30 - 3:30 pm
» Mandatory: Will record attendance + participation

* This Friday: Butler Lampson (Turing Laureate):

“Hints for Computer System Design”

9/11/19

Course Project

» Groups of 2 per project
* Project schedule (to be posted online)

—Team selection

—Project proposal

—Finalized project proposal

— Interim project presentation

—Final project presentation

—Final project report published on Medium:
https://medium.com/princeton-systems-course

Course Project: Options

+ Choice #1: Reproducibility
* Select paper from class or paper on related topic
* Re-implement and carefully re-evaluate results
+» See detailed proposal instructions on webpage

» Choice #2: Novelty (less common)

* Must be in area closely related to 518 topics
» We will take a narrow view on what’s permissible

» Both approaches need working code, evaluation

Topics Preview

Fundamentals

* Lectures
* Network communication and Remote Procedure Calls
+ State in Network File Systems & the Web
+ Time, logical clocks
* Vector clocks, distributed snapshots

* Precepts
* Lots of Go
» Mapreduce (assignment 1)

9/11/19

10

https://medium.com/princeton-systems-course

Eventual Consistency and Scaling Out

* Lectures
» Eventual consistency and Bayou
* Peer-to-peer systems and Distributed Hash Tables
* Scale-out key-value storage and Dynamo

* Precepts
* More Go
* Distributed snapshots (assignment 2)

Replicated State Machines

* Lectures
* Replicated State Machines, Primary-Backup
» Reconfiguration and View Change Protocols
» Consensus and Paxos
* Leader Election and RAFT

* Precepts

* Viewstamped replication
* RAFT (Assignments 3,4)

Strong Consistency and Scaling Out
with Transactions

* Lectures
« Strong consistency and the CAP Theorem
« Scalable Causal Consistency
» Atomic commit and Concurrency Control
» Spanner (Concurrency control + Paxos!)
» The SNOW Theorem and Systems

* Precepts
» Consistency
» Concurrency control

Various Topics

* Lectures
* Blockchains
+ Big data processing
* Cluster scheduling and fairness

* Precepts
+ Big data systems

9/11/19

11

