Type Checking

COS 326
Andrew Appel
Princeton University

slides copyright 2019 David Walker and Andrew Appel
permission granted to reuse these slides for non-commercial educational purposes
Implementing an Interpreter

let x = 3 in
x + x

Parsing

Let ("x",
Num 3,
Binop(Plus, Var "x", Var "x"))

Evaluation

Num 6

Pretty Printing

6

2
Implementing an Interpreter

```
let x = 3 in
x + x
```

```
Let ("x",
  Num 3,
  Binop(Plus, Var "x", Var "x"))
```

```
Num 6
```

```
Parsing
```

```
Type Checking
```

```
Evaluation
```

```
Pretty Printing
```

```
Num 6 -> 6
```

```
6
```

```
Pretty Printing
```
type t = IntT | BoolT | ArrT of t * t

type x = string (* variables *)
type c = Int of int | Bool of bool
type o = Plus | Minus | LessThan

type e =
 Const of c
 | Op of e * o * e
 | Var of x
 | If of e * e * e
 | Fun of x * typ * e
 | Call of e * e
 | Let of x * e * e
type t = IntT | BoolT | ArrT of t * t

type x = string (* variables *)
type c = Int of int | Bool of bool
type o = Plus | Minus | LessThan

type e =
 Const of c
 | Op of e * o * e
 | Var of x
 | If of e * e * e
 | Fun of x * typ * e
 | Call of e * e
 | Let of x * e * e

Notice that we require a type annotation here.

We'll see why this is required for our type checking algorithm later.
Language (Abstract) Syntax (BNF Definition)

t ::= int | bool | t -> t

b -- ranges over booleans
n -- ranges over integers

x -- ranges over variable names

c ::= n | b
o ::= + | - | <

e ::= Const of c
| Op of e * o * e
| Var of x
| If of e * e * e
| Fun of x * typ * e
| Call of e * e
| Let of x * e * e

type t = IntT | BoolT | ArrT of t * t

type x = string (* variables *)
type c = Int of int | Bool of bool
type o = Plus | Minus | LessThan

```plaintext
type e =
    Const of c
| Op of e * o * e
| Var of x
| If of e * e * e
| Fun of x * typ * e
| Call of e * e
| Let of x * e * e
```
Recall Inference Rule Notation

When defining how evaluation worked, we used this notation:

\[
\begin{align*}
 e_1 & \rightarrow^* \lambda x. e \\
 e_2 & \rightarrow^* v_2 \\
 e[v_2/x] & \rightarrow^* v \\
 e_1 e_2 & \rightarrow^* v
\end{align*}
\]

In English:

“if \(e_1 \) evaluates to a function with argument \(x \) and body \(e \) and \(e_2 \) evaluates to a value \(v_2 \) and \(e \) with \(v_2 \) substituted for \(x \) evaluates to \(v \) then \(e_1 \) applied to \(e_2 \) evaluates to \(v \)”

And we were also able to translate each rule into 1 case of a function in OCaml. Together all the rules formed the basis for an interpreter for the language.
This notation:

\[e \rightarrow^* v \]

was read in English as "e evaluates to v."

It described a relation between two things – an expression e and a value v. (And e was related to v whenever e evaluated to v.)

Note also that we usually thought of e on the left as "given" and the v on the right as computed from e (according to the rules).
The typing judgement

This notation:

\[G \vdash e : t \]

is read in English as "e has type t in context G." It is going to define how type checking works.

It describes a relation between three things – a type checking context G, an expression e, and a type t.

We are going to think of G and e as given, and we are going to compute t. The typing rules are going to tell us how.
What is the type checking context G?

Technically, I'm going to treat G as if it were a (partial) function that maps variable names to types. Notation:

$G(x)$ -- look up x's type in G
$G,x:t$ -- extend G so that x maps to t

When G is empty, I'm just going to omit it. So I'll sometimes just write: $\Gamma e : t$
Example Typing Contexts

Here's an example context:

$$x: \text{int}, \ y: \text{bool}, \ z: \text{int}$$

Think of a context as a series of "assumptions" or "hypotheses"

Read it as the assumption that "x has type int, y has type bool and z has type int"

In the substitution model, if you assumed x has type int, that means that when you run the code, you had better actually wind up substituting an integer for x.
Typing Contexts and Free Variables

One more bit of intuition:

If an expression e contains free variables x, y, and z then we need to supply a context G that contains types for at least x, y and z. If we don't, we won't be able to type-check e.
Goal: Give rules that define the relation "G ⊢ e : t".

To do that, we are going to give one rule for every sort of expression.

(We can turn each rule into a case of a recursive function that implements it pretty directly.)
Typing Contexts and Free Variables

t ::= int	bool	t -> t				
c ::= n	b					
o ::= +	-	<				
e ::= c	e o e	x	if e then e else e	λx:t.e	e e	let x = e in e

Rule for constant booleans:

\[
G \vdash b : \text{bool}
\]

English:

"boolean constants b *always* have type bool, no matter what the context G is"
Typing Contexts and Free Variables

Rule for constant integers:

\[G \vdash n : \text{int} \]

English:

“integer constants n \textit{always} have type \text{int}, no matter what the context \(G \) is"
Typing Contexts and Free Variables

t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | <

e ::= c
| e o e
| x
| if e then e else e
| λx:t.e
| e e
| let x = e in e

Rule for operators:

\[\text{G} ⊢ e_1 : t_1 \quad \text{G} ⊢ e_2 : t_2 \quad \text{optype}(o) = (t_1, t_2, t_3) \]

\[\text{G} ⊢ e_1 o e_2 : t_3 \]

where

\[\text{optype} (+) = (\text{int, int, int}) \]
\[\text{optype} (-) = (\text{int, int, int}) \]
\[\text{optype} (<) = (\text{int, int, bool}) \]

English:

“\(e_1 o e_2\) has type \(t_3\), if \(e_1\) has type \(t_1\), \(e_2\) has type \(t_2\) and \(o\) is an operator that takes arguments of type \(t_1\) and \(t_2\) and returns a value of type \(t_3\)"
Typing Contexts and Free Variables

\[t ::= \text{int} \mid \text{bool} \mid t \rightarrow t \]

\[c ::= n \mid b \]

\[o ::= + \mid - \mid < \]

\[e ::= c \mid e \ o \ e \mid x \mid \text{if } e \text{ then } e \text{ else } e \mid \lambda x : t . e \mid e \ e \mid \text{let } x = e \text{ in } e \]

Rule for variables:

\[G \vdash x : G(x) \]

Look up \(x \) in context \(G \)

English:

"variable \(x \) has the type given by the context"

Note: this rule explains (part) of why the context needs to provide types for all of the free variables in an expression
Typing Contexts and Free Variables

\[
\begin{align*}
t & ::= \text{int} \mid \text{bool} \mid t \rightarrow t \\
c & ::= n \mid b \\
o & ::= + \mid - \mid < \\
e & ::= \\
& \quad c \\
& \quad e \circ e \\
& \quad x \\
& \quad \text{if } e \text{ then } e \text{ else } e \\
& \quad \lambda x : t . e \\
& \quad e \circ e \\
& \quad \text{let } x = e \text{ in } e
\end{align*}
\]

Rule for if:

\[
G \vdash e_1 : \text{bool} \quad G \vdash e_2 : t \quad G \vdash e_3 : t \\
G \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t
\]

English:

“if e1 has type bool and e2 has type t and e3 has (the same) type t then e1 then e2 else e3 has type t”
Typing Contexts and Free Variables

Rule for functions:

\[G, x : t \vdash e : t_2 \]
\[G \vdash \lambda x : t . e : t \rightarrow t_2 \]

English:

“if \(G \) extended with \(x : t \) proves \(e \) has type \(t_2 \) then \(\lambda x : t . e \) has type \(t \rightarrow t_2 \)"

Notice that to know how to extend the context \(G \), we need the typing annotation on the function argument.
Typing Contexts and Free Variables

```
t ::= int | bool | t -> t

c ::= n | b

o ::= + | - | <

e ::= c
    | e o e
    | x
    | if e then e else e
    | λx:t.e
    | e e
    | let x = e in e
```

Rule for function call:

```
G ⊢ e1 : t1 -> t2         G ⊢ e2 : t1
---------------------------
G ⊢ e1 e2 : t2
```

English:

“if G extended with x:t proves e has type t2 then λx:t.e has type t -> t2”
Typing Contexts and Free Variables

\[t ::= \text{int} \mid \text{bool} \mid t \rightarrow t \]
\[c ::= n \mid b \]
\[o ::= + \mid - \mid < \]
\[e ::= c \]
\[| e o e \]
\[| x \]
\[| \text{if } e \text{ then } e \text{ else } e \]
\[| \lambda x: t. e \]
\[| e e \]
\[| \text{let } x = e \text{ in } e \]

Rule for let:

\[\begin{align*}
G \vdash e_1 : t_1 & \quad G, x : t_1 \vdash e_2 : t_2 \\
G \vdash \text{let } x = e_1 \text{ in } e_2 : t_2
\end{align*} \]

English:

"if e1 has type t1 and G extended with x:t1 proves e2 has type t2 then let x = e1 in e2 has type t2 "
A typing derivation is a "proof" that an expression is well-typed in a particular context.

Such proofs consist of a tree of valid rules, with no obligations left unfulfilled at the top of the tree. (ie: no axioms left over).

notice that “int” is associated with x in the context

\[
\begin{align*}
G, x: \text{int} & \vdash x : \text{int} \\
G, x: \text{int} & \vdash 2 : \text{int} \\
G & \vdash x + 2 : \text{int} \\
G & \vdash \lambda x : \text{int}. x + 2 : \text{int} \to \text{int}
\end{align*}
\]
Key Properties

Good type systems are *sound*.

- ie, well-typed programs have "well-defined" evaluation
 - ie, our interpreter should not raise an exception part-way through because it doesn't know how to continue evaluation
 - colloquial phrase: “sound type systems do not go wrong”

Examples of OCaml expressions that go wrong:

- true + 3 (addition of booleans not defined)
- let (x,y) = 17 in ... (can’t extract fields of int)
- true (17) (can’t use a bool as if it is a function)

Sound type systems *accurately* predict run time behavior

- if e : int and e terminates then e evaluates to an integer
Soundness = Progress + Preservation

Proving soundness boils down to two theorems:

Progress Theorem:
If $\vdash e : t$ then either:
(1) e is a value, or
(2) $e \rightarrow e'$

Preservation Theorem:
If $\vdash e : t$ and $e \rightarrow e'$ then $\vdash e' : t$

See COS 510 for proofs of these theorems.
But you have most of the necessary techniques:
Proof by induction on the structure of ...
... various inductive data types. :-(
The typing rules also define an algorithm for type checking ...

If you view G and e as inputs, the rules for “G ⊢ e : t” tell you how to compute t

(see demo code)
TYPE INFERENCE
Robin Milner

For three distinct and complete achievements:

1. LCF, the mechanization of Scott's Logic of Computable Functions, probably the first theoretically based yet practical tool for machine assisted proof construction;

2. ML, the first language to include polymorphic type inference together with a type-safe exception-handling mechanism;

3. CCS, a general theory of concurrency.

In addition, he formulated and strongly advanced full abstraction, the study of the relationship between operational and denotational semantics.

We will be studying Hindley-Milner type inference. Discovered by Hindley, rediscovered by Milner. Formalized by Damas. Broken several times when effects were added to ML.
The ML language and type system is designed to support a very strong form of type inference.

```ml
let rec map f l =
  match l with
  [ ] -> [ ]
| hd::tl -> f hd :: map f tl
```

It’s very convenient we don’t have to annotate \(f \) and \(l \) with their types, as is required by our type checking algorithm.
The ML language and type system is designed to support a very strong form of type inference.

```ocaml
let rec map f l =
  match l with
  [ ] -> [ ]
| hd::tl -> f hd :: map f tl
```

ML finds this type for map:

```ocaml
map : ('a -> 'b) -> 'a list -> 'b list
```
The ML language and type system is designed to support a very strong form of type inference.

```
let rec map f l =
    match l with
    [ ] -> [ ]
  | hd::tl -> f hd :: map f tl
```

ML finds this type for map:

```
map : ('a -> 'b) -> 'a list -> 'b list
```

which is really an abbreviation for this type:

```
map : forall 'a,'b.('a -> 'b) -> 'a list -> 'b list
```
We call this type the **principal type (scheme)** for map.

Any other ML-style type you can give map is an instance of this type, meaning we can obtain the other types via substitution of types for parameters from the principle type.

E.g.:

```
map : ('a -> 'b) -> 'a list -> 'b list
```

```plaintext
('a -> bool) -> 'a list -> bool list
(`a -> int) -> 'a list -> int list
(`a -> 'a) -> 'a list -> 'a list
```
Principal types are great:

- the type inference engine can make a *best choice* for the type to give an expression
- the engine doesn't have to guess (and won't have to guess wrong)

The fact that principal types exist is surprisingly brittle. If you change ML's type system a little bit in either direction, it can fall apart.
Suppose we take out polymorphic types and need a type for id:

```ocaml
let id x = x
```

Then the compiler might guess that id has one (and only one) of these types:

```
id : bool -> bool
```

```
id : int -> int
```
Language Design for Type Inference

Suppose we take out polymorphic types and need a type for `id`:

```
let id x = x
```

Then the compiler might guess that `id` has one (and only one) of these types:

- `id : bool -> bool`
- `id : int -> int`

But later on, one of the following code snippets won't type check:

```
id true
id 3
```

So whatever choice is made, a different one might have been better.
Language Design for Type Inference

We showed that removing types from the language causes a failure of principal types.

Does adding more types always make type inference easier?
Language Design for Type Inference

We showed that removing types from the language causes a failure of principle types.

Does adding more types always make type inference easier?

Nope!
OCaml has universal types on the outside ("prenex quantification"):

\[
\forall a, b. \left((a \rightarrow b) \rightarrow a \rightarrow b \rightarrow [\text{list}] \rightarrow a \rightarrow b \rightarrow [\text{list}] \right)
\]

It does not have types like this:

\[
\left(\forall a. a \rightarrow \text{int} \right) \rightarrow \text{int} \rightarrow \text{bool}
\]

argument type has its own polymorphic quantifier
Consider this program:

```plaintext
let f g = (g true, g 3)
```

notice that parameter g is used inside f as if:

1. its argument can have type bool, **AND**
2. its argument can have type int
Consider this program:

```ml
let f g = (g true, g 3)
```

notice that parameter \(g \) is used inside \(f \) as if:

1. its argument can have type \(\text{bool} \), \textit{AND}
2. its argument can have type \(\text{int} \)

Does the following type work?

```ml
('a -> int) -> int * int
```
Consider this program:

```
let f g = (g true, g 3)
```

notice that parameter g is used inside f as if:

1. it’s argument can have type bool, \textit{AND}
2. it’s argument can have type int

Does the following type work?

```
f: ('a -> int) -> int * int
```

\textit{NO}: this says g’s argument can be any type ‘a (it could be int or bool)

\textit{Consider g} is (fun x -> x + 2) : int -> int.
Unfortunately, \(f g \) goes wrong when \(g \) applied to true inside \(f \).
Consider this program again:

```
let f g = (g true, g 3)
```

We might want to give it this type:

```
f : (forall a.a->a) -> bool * int
```

Notice that the universal quantifier appears left of ->
System F is a lot like OCaml, except that it allows universal quantifiers in any position. It could type check f.

```ml
let f g = (g true, g 3)

f : (forall a.a->a) -> bool * int
```

Unfortunately, type inference in System F is undecidable.
System F is a lot like OCaml, except that it allows universal quantifiers in any position. It could type check f.

```
let f g = (g true, g 3)
```

```
f : (forall a.a->a) -> bool * int
```

Unfortunately, type inference in System F is undecidable.

Developed in 1972 by logician Jean Yves-Girard who was interested in the consistency of a logic of 2nd-order arithmetic.

Rediscovered as programming language by John Reynolds in 1974.
Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints. What type for this?

```ocaml
let f x = x + x
```
Language Design for Type Inference

Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints. What type for this?

```ocaml
let f x = x + x

f : int -> int

f : float -> float
```
Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints. What type for this?

```ocaml
let f x = x + x

f : int -> int ?

f : float -> float ?

f : 'a -> 'a ?
```
Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints. What type for this?

``` Ocaml 
let f x = x + x

f : int -> int ?

f : float -> float ?

f : 'a -> 'a ?
```

No type in OCaml's type system works. In Haskell:

``` Haskell 
f : Num 'a => 'a -> 'a
```
INFERRING SIMPLE TYPES
Type Schemes

A *type scheme* contains type variables that may be filled in during type inference:

\[s ::= a \mid \text{int} \mid \text{bool} \mid s \rightarrow s \]

A *term scheme* is a term that contains type schemes rather than proper types. Eg, for functions:

\[
\text{fun (x:s) -> e} \\
\text{let rec f (x:s) : s = e}
\]
Two Algorithms for Inferring Types

Algorithm 1:
• Declarative; generates constraints to be solved later
• Easier to understand
• Easier to prove correct
• Less efficient, not used in practice

Algorithm 2:
• Imperative; solves constraints and updates as-you-go
• Harder to understand
• Harder to prove correct
• More efficient, used in practice
• See: http://okmij.org/ftp/ML/generalization.html
Algorithm 1

1) Add distinct variables in all places type schemes are needed

2) Generate constraints (equations between types) that must be satisfied in order for an expression to type check
 • Notice the difference between this and the type checking algorithm from last time. Last time, we tried to:
 • eagerly deduce the concrete type when checking every expression
 • reject programs when types didn't match. eg:
 \[f e \quad -- \quad f's \ argument \ type \ must \ equal \ e \]
 • This time, we'll collect up equations like:
 \[(a \rightarrow b) = c \]

3) Solve the equations, generating substitutions of types for var's
let rec map f l =
 match l with
 | [] -> []
 | hd::tl -> f hd :: map f tl
let rec map (f:a) (l:b) : c =
 match l with
 | [] -> []
 | (hd:d)::(tl:g) ->
 f hd :: map f tl
let rec map (f:a) (l:b) : c =
 match l with
 [] -> []
 | (hd:d)::(tl:g) ->
 f hd :: map f tl

b = d list
a = d -> e
...
let rec map (f:a) (l:b) : c =
match l with
 [] -> []
| hd::tl -> f hd :: map f tl

final constraints:
b = b' list
b = b'' list
b = b''' list
a = a
a = b'' -> a'
c = c' list
c' = c'
d list = c' list
d list = c
let rec map (f:a) (l:b) : c =
 match l with
 | [] -> []
 | hd::tl -> f hd :: map f tl

final constraints:

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>b = b' list</td>
<td>[b' -> c'/a]</td>
</tr>
<tr>
<td>b = b'' list</td>
<td>[b' list/b]</td>
</tr>
<tr>
<td>b = b''' list</td>
<td>[c' list/c]</td>
</tr>
<tr>
<td>a = a</td>
<td></td>
</tr>
<tr>
<td>b = b'''' list</td>
<td></td>
</tr>
<tr>
<td>a = b'' -> a'</td>
<td></td>
</tr>
<tr>
<td>c = c' list</td>
<td></td>
</tr>
<tr>
<td>a' = c'</td>
<td></td>
</tr>
<tr>
<td>d list = c' list</td>
<td></td>
</tr>
<tr>
<td>d list = c</td>
<td></td>
</tr>
</tbody>
</table>
Step 3: Solve Constraints

let rec map (f:a) (l:b) : c =
match l with
 [] -> []
| hd::tl -> f hd :: map f tl

final solution:
[b' -> c'/a]
[b' list/b]
[c' list/c]

let rec map (f:b' -> c') (l:b' list) : c' list =
match l with
 [] -> []
| hd::tl -> f hd :: map f tl
let rec map (f:a) (l:b) : c =
 match l with
 | [] -> []
 | hd::tl -> f hd :: map f tl

renaming type variables:

let rec map (f: 'a -> 'b) (l: 'a list): 'b list =
 match l with
 | [] -> []
 | hd::tl -> f hd :: map f tl
Type Inference Details

Type constraints are sets of equations between type schemes

- \(q ::= \{ s_{11} = s_{12}, \ldots, s_{n1} = s_{n2} \} \)

- e.g.: \(\{ b = b' \text{ list}, a = (b \rightarrow c) \} \)
Syntax-directed constraint generation

- our algorithm crawls over abstract syntax of untyped expressions and generates

 • a term scheme
 • a set of constraints
Syntax-directed constraint generation

- our algorithm crawls over abstract syntax of untyped expressions and generates
 - a term scheme
 - a set of constraints

Algorithm defined as set of inference rules:

\[G \vdash u \Rightarrow e : t, q \]

- inputs
- outputs

context
unannotated expression
annotated expression
type (scheme)
constraints that must be solved
Syntax-directed constraint generation
- our algorithm crawls over abstract syntax of untyped expressions and generates
 - a term scheme
 - a set of constraints

Algorithm defined as set of inference rules:

\[
G \vdash u \Rightarrow e : t, q
\]

constraints that must be solved

context

unannotated expression

annotated expression
type (scheme)
in OCaml:

\[
\text{gen : ctxt} \to \text{exp} \to \text{ann_exp} \ast \text{scheme} \ast \text{constraints}
\]
Simple rules:

- \(G \vdash x \Rightarrow x : s, \{ \} \) (if \(G(x) = s \))

- \(G \vdash 3 \Rightarrow 3 : \text{int}, \{ \} \) (same for other ints)

- \(G \vdash \text{true} \Rightarrow \text{true} : \text{bool}, \{ \} \)

- \(G \vdash \text{false} \Rightarrow \text{false} : \text{bool}, \{ \} \)
Operators

\[G \vdash u_1 \Rightarrow e_1 : t_1, q_1 \quad G \vdash u_2 \Rightarrow e_2 : t_2, q_2 \]

\[G \vdash u_1 + u_2 \Rightarrow e_1 + e_2 : \text{int}, q_1 \cup q_2 \cup \{t_1 = \text{int}, t_2 = \text{int}\} \]

\[G \vdash u_1 \prec u_2 \Rightarrow e_1 < e_2 : \text{bool}, q_1 \cup q_2 \cup \{t_1 = \text{int}, t_2 = \text{int}\} \]
If statements

\[G \vdash u_1 \Rightarrow e_1 : t_1, q_1 \]
\[G \vdash u_2 \Rightarrow e_2 : t_2, q_2 \]
\[G \vdash u_3 \Rightarrow e_3 : t_3, q_3 \]

\[G \vdash \text{if } u_1 \text{ then } u_2 \text{ else } u_3 \Rightarrow \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \]

: t_2, \quad q_1 \cup q_2 \cup q_3 \cup \{ t_2 = t_3 \}
Function Application

\[G \vdash u_1 \Rightarrow e_1 : t_1, q_1 \]
\[G \vdash u_2 \Rightarrow e_2 : t_2, q_2 \quad \text{(for fresh a)} \]

\[\begin{array}{l}
G \vdash u_1 u_2 \Rightarrow e_1 e_2 : a, q_1 U q_2 U \{t_1 = t_2 \rightarrow a\}
\end{array} \]
Function Declaration

\[G, x : a \vdash u \Rightarrow e : t, q \quad \text{(for fresh } a) \]

\[\frac{}{G \vdash \text{fun } x \to e \Rightarrow \text{fun } (x : a) \to e : a \to t, q} \]
Function Declaration

G, f : a -> b, x : a ⊨ u ==> e : t, q (for fresh a,b)

G ⊨ rec f(x) = u ==> rec f (x : a) : b = e : a -> b, q U \{t = b\}
Summary: The type inference system

\[
G \vdash u_1 \Rightarrow e_1 : t_1, q_1 \quad \text{and} \quad G \vdash u_2 \Rightarrow e_2 : t_2, q_2
\]

\[
G \vdash u_1 + u_2 \Rightarrow e_1 + e_2 : \text{int}, q_1 \cup q_2 \cup \{t_1 = \text{int}, t_2 = \text{int}\}
\]

\[
G \vdash x \Rightarrow x : s, \{\} \quad \text{(if } G(x) = s)\]

\[
G \vdash 3 \Rightarrow 3 : \text{int}, \{\}
\]

\[
\text{for fresh } a
\]

\[
G \vdash \text{fun } x \rightarrow e \Rightarrow \text{fun } (x : a) \rightarrow e : a \rightarrow t, q
\]

\[
G, x : a \vdash u \Rightarrow e : t, q \quad \text{(for fresh } a)\]

\[
G, f : a \rightarrow b, x : a \vdash u \Rightarrow e : t, q \quad \text{(for fresh } a,b)\]

\[
G \vdash \text{rec } f(x) = u \Rightarrow \text{rec } f(x : a) : b = e : a \rightarrow b, q \cup \{t = b\}
\]
A solution to a system of type constraints is a substitution S

- a function from type variables to types
- assume substitutions are defined on all type variables:
 • $S(a) = a$ (for almost all variables a)
 • $S(a) = s$ (for some type scheme s)
- $\text{dom}(S) = \text{set of variables s.t. } S(a) \neq a$
Solving Constraints

A solution to a system of type constraints is a substitution S

- a function from type variables to type schemes
- assume substitutions are defined on all type variables:
 - $S(a) = a$ (for almost all variables a)
 - $S(a) = s$ (for some type scheme s)
- $\text{dom}(S) = \text{set of variables s.t. } S(a) \neq a$

We can also apply a substitution S to a full type scheme s.

\[
\begin{align*}
\text{apply: } & [\text{int}/a, \text{int} \rightarrow \text{bool}/b] \\
\text{to: } & b \rightarrow a \rightarrow b \\
\text{returns: } & (\text{int} \rightarrow \text{bool}) \rightarrow \text{int} \rightarrow (\text{int} \rightarrow \text{bool})
\end{align*}
\]
When is a substitution S a solution to a set of constraints?

Constraints: $\{ s_1 = s_2, s_3 = s_4, s_5 = s_6, \ldots \}$

When the substitution makes both sides of all equations the same.

Eg:

```
constraints:
  a = b \rightarrow c
  c = \text{int} \rightarrow \text{bool}
```
Substitutions

When is a substitution S a solution to a set of constraints?

Constraints: $\{ s_1 = s_2, s_3 = s_4, s_5 = s_6, \ldots \}$

When the substitution makes both sides of all equations the same.

Eg:

<table>
<thead>
<tr>
<th>Constraints:</th>
<th>Solution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a = b \to c$</td>
<td>$b \to (\text{int} \to \text{bool})/a$</td>
</tr>
<tr>
<td>$c = \text{int} \to \text{bool}$</td>
<td>$\text{int} \to \text{bool}/c$</td>
</tr>
<tr>
<td>b/b</td>
<td></td>
</tr>
</tbody>
</table>
Substitutions

When is a substitution S a solution to a set of constraints?

Constraints: \{ $s_1 = s_2$, $s_3 = s_4$, $s_5 = s_6$, \ldots \}

When the substitution makes both sides of all equations the same.

Eg:

<table>
<thead>
<tr>
<th>constraints:</th>
<th>solution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a = b \rightarrow c$</td>
<td>$b \rightarrow (\text{int} \rightarrow \text{bool})$ / a</td>
</tr>
<tr>
<td>$c = \text{int} \rightarrow \text{bool}$</td>
<td>$\text{int} \rightarrow \text{bool}$ / c</td>
</tr>
<tr>
<td>b / b</td>
<td>b / b</td>
</tr>
</tbody>
</table>

constraints with solution applied:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$b \rightarrow (\text{int} \rightarrow \text{bool})$ = $b \rightarrow (\text{int} \rightarrow \text{bool})$</td>
<td>$\text{int} \rightarrow \text{bool}$ = $\text{int} \rightarrow \text{bool}$</td>
</tr>
</tbody>
</table>
When is a substitution S a solution to a set of constraints?

Constraints: $\{ s_1 = s_2, s_3 = s_4, s_5 = s_6, \ldots \}$

When the substitution makes both sides of all equations the same.

A second solution

<table>
<thead>
<tr>
<th>constraints:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a = b \rightarrow c$</td>
</tr>
<tr>
<td>$c = \text{int} \rightarrow \text{bool}$</td>
</tr>
</tbody>
</table>

solution 1:

| b-$(\text{int} \rightarrow \text{bool}) / a$ |
| $\text{int} \rightarrow \text{bool} / c$ |
| b / b |

solution 2:

| int-$(\text{int} \rightarrow \text{bool}) / a$ |
| $\text{int} \rightarrow \text{bool} / c$ |
| int / b |
Substitutions

When is one solution better than another to a set of constraints?

constraints:

- \(a = b \rightarrow c \)
- \(c = \text{int} \rightarrow \text{bool} \)

solution 1:

- \(b \rightarrow (\text{int} \rightarrow \text{bool}) \) / \(a \)
- \(\text{int} \rightarrow \text{bool} \) / \(c \)
- \(b \) / \(b \)

type \(b \rightarrow c \) with solution applied:

- \(b \rightarrow (\text{int} \rightarrow \text{bool}) \)

solution 2:

- \(\text{int} \rightarrow (\text{int} \rightarrow \text{bool}) \) / \(a \)
- \(\text{int} \rightarrow \text{bool} \) / \(c \)
- \(\text{int} \) / \(b \)

type \(b \rightarrow c \) with solution applied:

- \(\text{int} \rightarrow (\text{int} \rightarrow \text{bool}) \)
Solution 1 is "more general" – there is more flex.
Solution 2 is "more concrete"
We prefer solution 1.
Substitutions

Solution 1 is "more general" – there is more flex.
Solution 2 is "more concrete"
We prefer the more general (less concrete) solution 1.
Technically, we prefer T to S if there exists another substitution U and for all types t, S(t) = U(T(t))
There is always a \textit{best} solution, which we can call a \textit{principal solution}. The best solution is (at least as) preferred as any other solution.
Example 1

- \(q = \{a=int, b=a\} \)
- principal solution \(S: \)
Example 1

- \(q = \{a=\text{int}, b=a\} \)
- principal solution \(S \):
 - \(S(a) = S(b) = \text{int} \)
 - \(S(c) = c \) (for all \(c \) other than \(a,b \))
Example 2

- $q = \{a=\text{int}, \ b=a, \ b=\text{bool}\}$
- principal solution S:
Example 2

– $q = \{a=\text{int}, \ b=a, \ b=\text{bool}\}$

– principal solution S:
 • does not exist (there is no solution to q)
Unification: An algorithm that provides the principal solution to a set of constraints (if one exists)

- Unification systematically simplifies a set of constraints, yielding a substitution
 - Starting state of unification process: (I,q)
 - Final state of unification process: (S, {})
Unification simplifies equations step-by-step until
- there are no equations left to simplify, or
- we find basic equations are inconsistent and we fail

```plaintext
type ustate = substitution * constraints

unify_step : ustate -> ustate
```
Unification simplifies equations step-by-step until
• there are no equations left to simplify, or
• we find basic equations are inconsistent and we fail

\[
\text{type ustate} = \text{substitution} \times \text{constraints}
\]

\[
\text{unify_step : ustate} \rightarrow \text{ustate}
\]

\[
\text{unify_step (S, \{bool=bool\} U q) } = (S, q)
\]

\[
\text{unify_step (S, \{int=int\} U q) } = (S, q)
\]
Unification simplifies equations step-by-step until
• there are no equations left to simplify, or
• we find basic equations are inconsistent and we fail

\[
\text{type } \text{ustate} = \text{substitution } \ast \text{ constraints}
\]

\[
\text{unify}_\text{step} : \text{ustate} \to \text{ustate}
\]

\[
\text{unify}_\text{step} (S, \{\text{bool}=\text{bool}\} \ U q) = (S, q)
\]

\[
\text{unify}_\text{step} (S, \{\text{int}=\text{int}\} \ U q) = (S, q)
\]

\[
\text{unify}_\text{step} (S, \{a=a\} \ U q) = (S, q)
\]
Unification simplifies equations step-by-step until
• there are no equations left to simplify, or
• we find basic equations are inconsistent and we fail

\[
\text{unify_step (S, \{A \rightarrow B = C \rightarrow D\} U q)}
\]

\[
= (S, \{A = C, B = D\} U q)
\]
Unification simplifies equations step-by-step until

- there are no equations left to simplify, or
- we find basic equations are inconsistent and we fail

\[
\text{unify_step} \quad \text{u_state} -\rightarrow \text{u_state}
\]

\[
\text{unify_step} \quad (S, \quad \{A \rightarrow B = C \rightarrow D\} \ U \ q) \\
= (S, \quad \{A = C, \quad B = D\} \ U \ q)
\]
Unification

unify_step (S, \{a=s\} U q) = ([s/a] o S, [s/a]q)

when a is not in FreeVars(s)
Unification

when a is not in \text{FreeVars}(s)

\text{unify_step}(s, \{a=s\} \cup q) = ([s/a] \circ s', [s/a]q)

de S then substitute s for a

the substitution S' defined to:

do S then substitute s for a

the constraints q' defined to:

be like q except replacing a
Recall this program:

```
fun x -> x x
```

It generates the constraints: \(a \rightarrow a = a \)

What is the solution to \(\{ a = a \rightarrow a \} \)?
Recall this program:

```
fun x -> x x
```

It generates the constraints: \(a \rightarrow a = a \)

What is the solution to \(\{ a = a \rightarrow a \} \)?

There is none!

Notice that \(a \) does appear in \text{FreeVars}(s)

Whenever \(a \) appears in \text{FreeVars}(s) and \(s \) is not just \(a \), there is no solution to the system of constraints.
Recall this program:

\[
\text{fun } x \rightarrow x \times x
\]

It generates the constraints: \(a \rightarrow a = a \)

What is the solution to \(\{a = a \rightarrow a\} \)?

There is none!

"when \(a \) is not in \(\text{FreeVars(s)} \)" is known as the "occurs check"
Summary: Unification Engine

(S, \{\text{bool}=\text{bool}\} \cup q) \rightarrow (S, q)

(S, \{\text{int}=\text{int}\} \cup q) \rightarrow (S, q)

(S, \{A \rightarrow B = C \rightarrow D\} \cup q) \rightarrow (S, \{A = C\} \cup \{B = D\} \cup q)

(S, \{a=s\} \cup q) \rightarrow ([s/a] \circ S, [s/a]q) \text{ when } a \text{ is not in } \text{FreeVars}(s)
Recall: unification simplifies equations step-by-step until
• there are no equations left to simplify:

(S, { })

no constraints left. S is the final solution!
Irreducible States

Recall: unification simplifies equations step-by-step until

• there are no equations left to simplify:

 (S, { })

 no constraints left. S is the final solution!

• or we find basic equations are inconsistent:

 • int = bool
 • s1→s2 = int
 • s1→s2 = bool
 • a = s (s contains a)

(or is symmetric to one of the above)

In the latter case, the program does not type check.
Generalization

Where do we introduce polymorphic values? Consider:

\[\text{g (fun x -> 3)} \]

It is tempting to do something like this:

\[\text{(fun x -> 3) : forall a. a -> int} \]

\[\text{g : (forall a. a -> int) -> int} \]

But recall the beginning of the lecture:

if we aren’t careful, we run into decidability issues
Generalization

Where do we introduce polymorphic values?

In ML languages: Only when values bound in "let declarations"

\[
g \left(\text{fun } x \rightarrow 3 \right)\]

No polymorphism for \text{fun } x \rightarrow 3!

\[
\text{let } f : \forall a. a \rightarrow a = \text{fun } x \rightarrow 3 \text{ in } g \ f
\]

Yes polymorphism for \(f \)!
Let Polymorphism

Where do we introduce polymorphic values?

```let x = v```

Rule:

- if `v` is a value (or guaranteed to evaluate to a value without effects)
  - OCaml has some rules for this
- and `v` has type scheme `s`
- and `s` has free variables `a`, `b`, `c`, ...
- and `a`, `b`, `c`, ... do not appear in the types of other values in the context
- then `x` can have type `forall a, b, c. s`
Let Polymorphism

Where do we introduce polymorphic values?

let x = v

Rule:
• if v is a value (or guaranteed to evaluate to a value without effects)
  • OCaml has some rules for this
• and v has type scheme s
• and s has free variables a, b, c, ...
• and a, b, c, ... do not appear in the types of other values in the context
• then x can have type $\forall a, b, c. \ s$

That’s a hell of a lot more complicated than you thought, eh?
Consider this function $f$ – a fancy identity function:

\[
\text{let } f = \text{fun } x \rightarrow \text{let } y = x \text{ in } y
\]

A sensible type for $f$ would be:

\[
f : \text{forall } a. \ a \rightarrow a
\]
Consider this function f – a fancy identity function:

```ocaml
let f = fun x -> let y = x in y
```

A bad (unsound) type for f would be:

```ocaml
f : forall a, b. a -> b
```
Consider this function f – a fancy identity function:

\[
\text{let } f = \text{fun } x \rightarrow \text{let } y = x \text{ in } y
\]

A bad (unsound) type for f would be:

\[
f : \text{forall } a, b. a \rightarrow b
\]

\[(f \text{ true}) + 7\]

goes wrong! but if f can have the bad type, it all type checks. This *counterexample* to soundness shows that f can’t possible be given the bad type safely
Now, consider doing type inference:

```plaintext
let f = fun x -> let y = x in y
```

\( x : a \)
Now, consider doing type inference:

\[
\text{let } f = \text{fun } x \rightarrow \text{let } y = x \text{ in } y
\]

\(x : a\)

suppose we generalize and allow \(y : \forall a.a\)
Now, consider doing type inference:

\[
\text{let } f = \text{fun } x \rightarrow \text{let } y = x \text{ in } y
\]

then we can use \( y \) as if it has any type, such as \( y : b \)

suppose we generalize and allow \( y : \forall a.a \)
Now, consider doing type inference:

```
let f = fun x -> let y = x in y
```

\[ x : a \]

suppose we generalize and allow \( y : \forall a.a \)

then we can use \( y \) as if it has any type, such as \( y : b \)

\[ x : a \]

but now we have inferred that \((\text{fun } x \to ...) : a \to b\)

and if we generalize again, \( f : \forall a,b. a \to b \)

That’s the bad type!
Now, consider doing type inference:

```
let f = fun x -> let y = x in y
```

suppose we generalize and allow `y : forall a.a`

this was the bad step – `y` can’t really have any type at all. Its type has got to be the same as whatever the argument `x` is.

`x` was in the context when we tried to generalize `y`!
The Value Restriction

let x = v

this has got to be a value to enable polymorphic generalization
Unsound Generalization Again

let x = ref [] in

not a value!

\( x : \forall a . \text{a list ref} \)
let x = ref [] in
x := [true];

not a value!

x : forall a . a list ref

use x at type bool as if x : bool list ref
Unsound Generalization Again

```ml
let x = ref [] in
x := [true];
List.hd (!x) + 3
```

\[ x : \text{forall } a . \text{a list ref} \]

\[ \text{use } x \text{ at type } \text{bool} \text{ as if } x : \text{bool list ref} \]

\[ \text{use } x \text{ at type } \text{int} \text{ as if } x : \text{int list ref} \]

and we crash ....
What does OCaml do?

```
let x = ref [] in
```

```text
x : '_weak1 list ref
```

A “weak” type variable can’t be generalized means “I don’t know what type this is but it can only be one particular type.”

Look for the “_” to begin a type variable name.
What does OCaml do?

```ocaml
let x = ref [] in
 x := [true];

x : '_weak1 list ref
x : bool list ref
```

The “weak” type variable is now fixed as a bool and can’t be anything else.

bool was substituted for ‘_weak during type inference.
What does OCaml do?

```ocaml
let x = ref [] in
x := [true];
List.hd (!x) + 3
```

```
x : '_weak1 list ref
```
```
x : bool list ref
```

**Error**: This expression has type bool but an expression was expected of type int

**type error ...**
One other example

notice that the RHS is now a value – it happens to be a function value but any sort of value will do

let x = fun () -> ref [] in

now generalization is allowed

\[ x : \forall \alpha. \text{unit} \rightarrow \alpha \text{ list ref} \]
One other example

notice that the RHS is now a value — it happens to be a function value but any sort of value will do

let x = fun () -> ref [] in

x () := [true];

now generalization is allowed

x : forall 'a. unit -> 'a list ref

x () : bool list ref
One other example

notice that the RHS is now a value – it happens to be a function value but any sort of value will do

let \( x = \text{fun} () \rightarrow \text{ref} [] \) in

\( x () := [\text{true}] \);

\( \text{List.hd} (!x ()) + 3 \)

what is the result of this program?
One other example

notice that the RHS is now a value – it happens to be a function value but any sort of value will do

\[
\text{let } x = \text{fun } () -> \text{ref } [] \text{ in } \\
x () := [\text{true}]; \\
\text{List.hd} (!x ()) + 3
\]

now generalization is allowed

\[
x : \forall 'a. \text{unit} \rightarrow 'a \text{ list ref}
\]

\[
x () : \text{bool list ref}
\]

\[
x () : \text{int list ref}
\]

what is the result of this program?

List.hd raises an exception because it is applied to the empty list. Why?
let x = fun () -> ref [] in

x () := [true];

List.hd (!x ()) + 3

what is the result of this program?

List.hd raises an exception because it is applied to the empty list. why?
TYPE INFERENCE:
THINGS TO REMEMBER
**Declarative algorithm:** Given a context $G$, and untyped term $u$:

- Find $e, t, q$ such that $G \vdash u \Rightarrow e : t, q$
  - understand the constraints that need to be generated

- Find substitution $S$ that acts as a solution to $q$ via *unification*
  - if no solution exists, there is no reconstruction

- Apply $S$ to $e$, ie our solution is $S(e)$
  - $S(e)$ contains schematic type variables $a, b, c$, etc that may be instantiated with any type

- Since $S$ is principal, $S(e)$ characterizes all reconstructions.

- If desired, use the type checking algorithm to validate
In order to introduce polymorphic quantifiers, remember:

- Quantifiers must be on the outside only
  - this is called “prenex” quantification
  - otherwise, type inference may become undecidable

- Quantifiers can only be introduced at let bindings:
  - let x = v
  - only the type variables that do not appear in the environment may be generalized

- The expression on the right-hand side must be a value
  - no references or exceptions