
Precept 5: Virtual Memory

COS 318: Fall 2019

Project 5 Schedule

● Precept: Monday 11/18 & Tuesday 11/19,
7:30pm - 8:20pm

● Design Review: Monday 11/25 & Tuesday
11/26, 3:00pm - 7:00pm

● Due: Sunday 12/08, 11:55pm

Project 5 Overview

● Goal: Add memory management + virtual
memory support to the kernel

● Read the project spec for more details

● Starter code can be found on the lab
machines (/u/318/code/project5)

● Start early

Project 5 Overview

● Add demand-paged VMM + restrict user
processes from kernel level privileges

● Need to implement:

○ Virtual address spaces for user processes

○ Page allocation

○ Paging to / from disk

○ Page fault handler

Implementation Checklist

● memory.h

○ page_map_entry_t

● memory.c

○ page_addr()

○ page_alloc()

○ init_mem()

○ setup_page_table()

○ page_fault_handler()

○ page_swap_in()

○ page_replacement_policy()

○ page_swap_out()

Big Picture

● Set up kernel memory

● Set up VA to PA mapping for each process on creation

○ Processes now run in virtual memory

○ Hardware uses mapping when executing instructions

● Implement the page fault handler

○ If virtual page not in memory, page it in from disk and map
it to a physical page

Address Translation Review

VA to PA Translation: Overview

● All addresses are virtual
=> must go through MMU

● MMU checks TLB first

● On miss: performs translation
using page tables

● Image Source

https://en.wikipedia.org/wiki/Memory_management_unit#/media/File:MMU_principle_updated.png

VA to PA Translation: Overview

● Page tables defined in software

● Use CR3 register to find root
page table in RAM

● Checks page permissions -
faults if invalid

● Image Source

https://en.wikipedia.org/wiki/Memory_management_unit#/media/File:MMU_principle_updated.png

Paging System: Linear to Physical

Image Source

https://www.coresecurity.com/sites/default/files/wp-content/uploads/2016/05/32bit-tables.png

Paging System: Dir. / Table Entries

● Hierarchical System:

○ Directory Entries hold page table start address

○ Table Entries hold page start address

○ Page start address + offset = Physical address

Paging System: Dir. / Table Entries

● Dirs and Tables must fit onto a 4KB page!

○ Therefore, the lower 12 bits of the start
address are always 0

● Higher 20 bits hold start address, lower 12 bits
store permissions / status

Paging System: Directory Entries

Image Source

http://valhalla.bofh.pl/~l4mer/WDM/secureread/PdePte.png

Paging System: Table Entries

Image Source

http://valhalla.bofh.pl/~l4mer/WDM/secureread/PdePte.png

Paging System: VA Structure

Image Source

https://i.stack.imgur.com/x10Lv.gif

Check: VA Space = Paging Space

● We use 32-bit (4-byte) VAs, 4KB pages, and a two
level page table system

○ 4KB per page / 4 bytes per entry = 1K entries

● 2^10 (p.d.e) * 2^10 (p.t.e) * 2^12 (bytes per page)
= 2^32 addressable bytes

● 32 bits can address 2^32 locations

Project Description

Initializing Kernel Memory

● Allocate page directory

● Allocate N_KERNEL_PTS (page tables)

● For each page table, “allocate” pages until you reach
MAX_PHYSICAL_MEMORY

● physical addr. = virtual addr. for the kernel

● Set the correct flags (i.e. give user the permission to use
the memory pages associated with the screen)

Initializing User Memory

● User processes need four types of pages (page directory,
page table, stack page table, and stack pages)

● PROCESS_START (virtual addr. of code + data):
○ Use one page table and set entries relative to process address space
○ Each process needs pcb->swap_size memory

● PROCESS_STACK (virtual addr. of top of stack):
○ Allocate N_PROCESS_STACK_PAGES for each process

Page Faults

● A page fault occurs when we access a physical page
frame that is not mapped into the virtual address space of
the user process

● How does the hardware know that a page fault occurred?

● Keep track of metadata of physical page frames:
○ Free or not?
○ Information to implement a replacement algorithm (FIFO is sufficient)
○ Pinned or not? When would you want to pin a physical page frame?

Page Faults

● You need to write page_fault_handler():

○ Find the faulting page in the page directory and page table
○ Allocate a page frame of physical memory
○ Load the contents of the page from the appropriate swap

location on the USB disk (think about how to figure out the
swap location)

○ Update the page table of the process

Paging From Disk

● To resolve a page fault, you might need to evict the contents of a physical
page frame to disk

● Use a USB disk image for swap storage (usb/scsi.h)

● Use scsi_write() and scsi_read(), which have already been implemented

● Assume that processes do not change size (no dynamic memory allocation)

● Update page tables

● Decide if you need to flush TLB

Tips + Other Notes

Some Tips

● One page table is enough for process memory space

● Some functions (i.e. page fault handler) can be
interrupted
○ Use synchronization primitives!

● Some pages don’t need to be swapped out
○ Kernel pages, process page directory, page tables, stack

page tables, and stack pages

Some Tips

● Test first with kernel threads
○ Implement page_addr()
○ Partially implement page_alloc() (assume number of pages is

smaller than PAGEABLE_PAGES)
○ Implement init_memory()
○ Partially implement setup_page_table() (kernel threads only)
○ Comment out the loader thread in kernel.c and fix the value of

NUM_THREADS in kernel.h

Some Tips

● After kernel threads are working
○ Finish the implementation of setup_page_table()

(deal with processes)
○ Implement page_fault_handler()
○ Implement page_swap_in()
○ Uncomment the loader thread in kernel.c

● You should see a command shell on the screen

Some Tips

● After the shell is working
○ Finish the implementation of page_alloc()
○ Implement page_replacement_policy()
○ Implement page_swap_out()

● Use the provided bochs executable in
/u/318/code/project5/bin and NOT in /u/318/bin for
testing

bochs-gdb vs bochsdbg

● bochsdbg does not work on this assignment!
● Use bochs-gdb instead:

○ Uncomment line 9 in bochsrc (set port to free value)
○ Run bochs-gdb, then gdb in another window
○ Run target remote localhost:<port>
○ Run file kernel, then break kernel_start (up

to you)
○ Continue, then debug with standard gdb commands

Design Review

Page Table + Page Faults
Explain how virtual addresses are translated to physical addresses on i386. When are page
faults triggered? How are you going to figure out what address a fault occurred on?

Page Map
You're going to need a data structure to track information about pages. What information
should you track?

Calling Relationships
For the functions page_alloc, page_swap_in, page_swap_out, and
page_fault_handler, please describe the caller-callee relationship graph

Questions?

