COS 318: Operating Systems
00
Deadlock

Jaswinder Pal Singh and a Fabulous Course Staff
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

= fiﬁ
s

Definitions

o060
¢ Use “processes” and “threads” interchangeably (1 thread per proc)
¢ Resource: a (passive) object that can be granted to a thread and

that it needs to do its job
e Preemptable: CPU, Memory (can be taken away from thread without harm)
e Non-preemptable: files, mutex, CD recorder ... (can’t just be taken away)

¢ Operations on a resource: Request, Use, Release
¢ Starvation: At least one thread waits forever for resource

¢ Deadlock: A set of processes have a deadlock if every process in
the set is waiting for an event that only another process in the set
can cause

¢ Livelock?

¢ In general, deadlock happens with non-preemptable resources
e Or resource can be taken away and reallocated to alleviate deadlock

Today’ s Topics

+ Conditions for deadlock
+ Strategies to deal with deadlocks

:

2

Example from CPU Scheduling
N

+ T1 at priority 4, T2 at priority 1 and T2 holds lock L
+T1 needs lock, but for it to get lock T2 must release lock
¢ T2 needs to get on CPU to release lock

+ But T2 does not get CPU until T1 gets lock and makes
progress and gives up CPU, and T1 does not get lock
until T2 gets CPU

¢ Introducing another thread T3 at priority 3 creates a less
contrived situation




Another Example

+ A utility program
e Copy a file from tape to disk
e Print the file to printer

e Two processes running program
+ Resources A holds tape
e Tape
e Disk
e Printer
+ A deadlock
e A holds tape and disk,
e B holds printer,
e A requests for a printer
e B requests for tape and disk

equests printer

B holds printer

7o
'S
(4,1

Conditions for Deadlock

o060
¢ Mutual exclusion condition

e A resource is assigned to no more than one process at a time

¢ Hold and Wait

e Processes holding resources can request new resources
while continuing to hold the old resources

+ No preemption
e Resources cannot be taken away once obtained

# Circular chain of requests
e One process waits for another in a circular fashion

¢ Question
e Are all conditions necessary?

N 2
o
-

Resource Allocation Graph
oo0o¢

+ Process A is holding Example:
resource R ¢ Arequests S while holding R

¢ Process B requests

resource S
. ¢ B requests R while holding S

a ¢ A cycle in resource allocation
graph = deadlock

How do you deal with multiple instances of a resource?

:

6

Eliminate Competition for Resources?

o060
¢ If run A to completion and then
run B, there will be no deadlock
¢ Generalize this idea for all @

processes?

®] ®

Previous example

¢ Is this a good idea for CPU
scheduling?




Strategies

# Ostrich Algorithm
+ Detection and recovery
e Fix the problem afterwards
+ Dynamic avoidance
e Careful allocation of resources to avoid deadlock
¢ Prevention
e Negate one of the four conditions

C o
'S
©

Detection and Recovery

+ Detection
e Scan resource graph
e Detect cycles
+ Recovery (difficult)
e Terminate some process/threads (can you always do this?)

e Roll back actions of deadlocked threads and retry
+ E.g. transactions: all operations are provisional until they have
the required resources to complete operation
* Roll back a process that holds a needed resource to its last
checkpoint, releasing resources

Ignore the Problem

¢ The OS kernel locks up
e Reboot
+ Device driver locks up
e Remove the device
e Restart
+ An application hangs (“not responding”)
e Terminate the application and restart
e Familiar with this?
+ An application runs for a while and then hangs
e Checkpoint the application
e Change the environment (reboot OS)
e Restart from the previous checkpoint

1o

10

Deadlock Avoidance
o0 ¢
¢ Always maintain Safety Condition when allocating
resources:
e Not currently deadlocked

e There is some scheduling order in which every process can
run to completion (even if all request their max resource needs
at once)

¢ Banker’s algorithm (Dijkstra 65)

e Single resource type
 Every process has a credit
+ Total resources may not satisfy all credits
« Track resources assigned to and needed by each process
+ On every resource allocation, check for Safety Condition

;@g 12

12



Examples (Single Resource Type)
o060
Total: 8
Has | Max Has | Max Has | Max Has | Max Has | Max
Pil2| 6Pl 2]|6][Pi|2]6]|Pi|2]6]]|P] 2
Pal 2 | 3Pzl 3| 3] ([P2l 0| 0]]|P:lO]| O]][P2 O
Ps| 3| 5 ||Ps| 3| 5 ||[Ps| 3|5 ||[Ps|] 5] 5]([Ps|] 0] 0
Free: 1 Free: 0 Free: 3 Free: 1 Free: 6
Has | Max
Pi| 4] 6 s
Pl 113 : + Multiple resource types
Ps] 2 | 5 » Two matrices: “allocated” and “needed”
Free: 1 « See textbook for details
@ + Can we all be bankers and go home? "
13
Prevention: Avoid Hold and Wait
06

¢ Can’t get all resources you need? Don'’t hold any

+ Two-phase locking
Phase I:

e Try to lock all resources at the beginning
Phase II:

e |f successful, use the resources and release them
e Otherwise, release all resources and start over

¢ What about the tape-disk-printer example?

Prevention: Avoid Mutual Exclusion

¢ Some resources are not physically sharable
e Printer, tape, etc
¢ Some can be made sharable
e Read-only files, memory, etc
e Read/write locks
¢ Some can be virtualized by spooling
e Use storage to virtualize a resource into multiple

resources, thus eliminating the non-sharable
(mutually exclusive) resource from the equation

¢ What about the tape-disk-printer example?

¢ Process doesn’t have to wait for printer while
another process is holding it
e Move the problem to disk: much bigger

[ | Spooling

Prevention: No Preemption

¢ Make the scheduler be aware of resource allocation
¢ Method
e If the system cannot satisfy a request from a process holding
resources, preempt the process and release all resources
e Schedule it only if the system satisfies all resources
¢ Alternative
e Preempt the process holding the requested resource
+ Copying
e Copying to a buffer to release the resource?
+ What about the tape-disk-printer example?

16




Prevention: No Circular Wait

+ Impose an order of requests for all resources
¢ Method
e Assign a unique id to each resource
e All requests must be in an ascending order of the ids
+ A variation
e Assign a unique id to each resource
e No process requests a resource lower than what it is holding
+ What about the tape-disk-printer example?

@ ®

'S
2

In Practice

o060

+ Ignore the problem for applications

e It is application developers’ job to deal with their deadlocks

e OS provides mechanisms to break applications’ deadlocks
¢ Kernel should not have any deadlocks

e Use prevention methods

e Most popular is to apply no-circular-wait principle everywhere
+ Other application examples

e Routers for a parallel machine (typically use the no-circular-
wait principle)

e Process control in manufacturing

Which Is Your Favorite?

+ Ignore the problem
e Itis user’s fault
+ Detection and recovery
e Fix the problem afterwards
+ Dynamic avoidance
e Careful allocation
+ Prevention (Negate one of the four conditions)
e Avoid mutual exclusion
Avoid hold and wait
No preemption
No circular wait

18

Summary

¢ Deadlock conditions
Mutual exclusion
Hold and wait
No preemption
Circular chain of requests
¢ Strategies to deal with deadlocks
e Simpler ways are to negate one of the four conditions

20

20



