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Outline

u Protection Mechanisms and OS Structures

u Virtual Memory: Protection and Address Translation
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Some Protection Goals

u CPU
l Enable kernel to take CPU away to prevent a user from 

using CPU forever
l Users should not have this ability

u Memory
l Prevent a user from accessing others’ data
l Prevent users from modifying kernel code and data 

structures
u I/O

l Prevent users from performing “illegal” I/Os
u Question

l What’s the difference between protection and security?
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Architecture Support for CPU Protection

An interrupt or exception/trap (INT)

A special instruction (IRET)

Kernel (privileged) mode
• Regular instructions
• Privileged instructions
• Access user memory
• Access kernel memory

User mode
• Regular instructions
• Access user memory

• Privileged Mode
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Privileged Instruction Examples

u Memory address mapping
u Flush or invalidate data cache
u Invalidate TLB entries
u Load and read system registers
u Change processor modes from kernel to user
u Change the voltage and frequency of processor
u Halt a processor
u Reset a processor
u Perform I/O operations

• Other architectural support for protection in system?
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OS Structures and Protection: Monolithic

u All kernel routines are together, 
linked in single large executable
l Each can call any other
l Services and utilities

u Provides a system call API
u Examples: 

l Linux, BSD Unix, Windows, …
u Pros

l Shared kernel space
l Good performance

u Cons
l Instability: crash in any procedure 

brings system down
l Unweildy/difficult to maintain, extend

Kernel
(many things)

User
program

User
program

syscall sys
call
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Layered Structure

u Hiding information at each layer
u Layered dependency 
u Examples

l THE (6 layers)
• Mostly for functionality splitting

l MS-DOS (4 layers)
u Pros

l Layered abstraction
• Separation of concerns, elegance

u Cons
l Inefficiency
l Inflexibility

Hardware

Level 1

Level 2

Level N
...
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Possible Implementation: Protection Rings

Level 0

Level 1
Level 2
Level 3

Operating system
kernel

Operating system
services

Applications

Privileged instructions
can be executed only
when current privileged
level (CPR) is 0



3

9

Microkernel Structure
u Services are regular processes
u Micro-kernel obtains services for 

users by messaging with services
u Examples: 

l Mach, Taos, L4, OS-X
u Pros?

l Flexibility to modify services
l Fault isolation

u Cons?
l Inefficient (boundary crossings)
l Inconvenient to share data 

between kernel and services
l Just shifts the problem, to level 

with less protection? Testing?

entry

User
program

OS
Services

µ-kernel

syscall
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Virtual Machine Monitor

VM1

OS1

Virtual Machine

u Virtual machine monitor
l Virtualize hardware
l Run several OSes
l Examples

• IBM VM/370
• Java VM
• VMWare, Xen

u What would you use 
virtual machine for?

Apps

VMk

OSk

Apps

. . .

Raw Hardware

Memory Protection

u Kernel vs. user mode, plus
u Virtual address spaces and Address Translation

Physical memory                     Abstraction: virtual memory
No protection                                   Every program isolated from all

others and from the OS

Limited size                                      Illusion of “infinite” memory

Sharing visible to programs              Transparent --- can’t tell if                
physical memory is shared

Virtual addresses are translated to physical addresses
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The Big Picture

u DRAM is fast, but relatively expensive
u Disk is inexpensive, but slow

l 100X less expensive
l 100,000X longer latency
l 1000X less bandwidth

u Goals
l Run programs efficiently
l Make the system safe

CPU

Memory

Disk
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Issues

u Many processes
l The more processes a system can handle, the better

u Address space size
l Many processes whose total size may exceed memory
l Even one process may exceed physical memory size

u Protection
l A user process should not crash the system
l A user process should not do bad things to other 

processes
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Consider A Simple System

u Only physical memory
l Applications use it directly

u Run three processes
l Email, browser, gcc

u What if 
l browser writes at x7050?
l email needs to expand?
l browser needs more 

memory than is on the 
machine?

OS

email

browser

gcc

Free x0000

x2500

x5000

x7000

x9000

Need to Handle

u Protection

u Finiteness

l Not having entire application/data in memory at once
l Relocation

l Not having programmer worry about it (too much)

16 17

Handling Protection

u Errors/malice in one process should not affect others
u For each process, check each load and store 

instruction to allow only legal memory references

CPU Check Physical
memory

address

error

data

gcc
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Handling Finiteness

u A process should be able to run regardless of physical 
memory size or where its data are physically placed

u Give each process a large, static “fake” address 
space that is large and contiguous and entirely its own

u As a process runs, relocate or map each load and 
store to addresses in actual physical memory 

CPU Check &
relocate

Physical
memory

address

data

email
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Virtual Memory

u Flexible
l Processes (and data) can move in memory as they 

execute, and can be part in memory and part on disk
u Simple

l Applications generate loads and stores to addresses in 
the contiguous, large, “fake” address space

u Efficient
l 20/80 rule: 20% of memory gets 80% of references
l Keep the 20% in physical memory (a form of caching)

u Protective
l Protection check integrated with translation mechanism
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Address Mapping and Granularity
u Must have some “mapping” mechanism

l Map virtual to physical addresses in RAM or disk

u Mapping must have some granularity
l Finer granularity provides more flexibility
l Finer granularity requires more mapping information
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Generic Address Translation: the MMU

u CPU view
l Virtual addresses
l Each process has its own 

memory space [0, high] –
virtual address space

u Memory or I/O device view
l Physical addresses

u Memory Management Unit 
(MMU) translates virtual 
address into physical address 
for each load and store

u Combination of hardware and 
(privileged) software controls 
the translation

CPU

MMU

Physical
memory

I/O
device

Virtual address

Physical address
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Where to Keep Translation Information?

Goals of translation
u Implicit translation for each 
memory reference
u A hit should be very fast
u Trigger an exception on a miss
u Protect from user’s errors

Registers

L1

Memory

Disk

2-4x

100-500x

20M-30Mx

Paging

L2-L3 10-20x

Address Translation Methods

u Base and Bound
u Segmentation
u Paging
u Multilevel translation
u Inverted page tables

Base and Bound

virtual memory                        physical memory
0 

code                 6250 (base)

data

bound
stack               6250+bound

Each program loaded into contiguous
regions of physical memory. 
Example on next slide
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Base and Bound (or Limit) Example: Cray-I
u Protection

l A process can only access physical 
memory in [base, base+bound]

u On a context switch
l Save/restore base, bound regs

u Pros
l Simple
l Inexpensive (Hardware cost: 2 

registers, adder, comparator)
u Cons

l Can’t fit all processes in memory, have 
to swap

l Fragmentation in memory
l Relocate processes when they grow?
l Compare and add on every instruction
l Very coarse grained

virtual address

base

bound

error

+

>

physical address

Why not have multiple contiguous segments for each process, and 
keep their base/bound data in hardware?
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Segmentation

u Every process has table of 
(seg, size) for its segments

u Treats (seg, size) as a finer-
grained (base, bound)

u Protection
l Every entry contains rights

u On a context switch
l Save/restore table in kernel memory

u Pros
l Programmer knows program and so 

segments, therefore can be efficient
l Easy to share data

u Cons
l Complex management
l Fragmentation

physical address

+

segment offset

Virtual address

seg size

...

>
error

Segmentation Example

(assume 2 bit segment ID, 12 bit segment offset)

v-segment #       p-segment          segment                                            physical memory
start                   size                                              

code   (00)          0x4000              0x700                                         
data    (01)          0                        0x500
- (10)           0                        0
stack  (11)           0x2000              0x1000

virtual memory

0
6ff

1000
14ff

3000

3fff

0

4ff

2000

2fff

4000

46ff

Segmentation Example (Cont’d)

Virtual memory  for  strlen(x)

Main: 240                store 1108, r2
244                 store pc+8, r31
248                 jump 360
24c
…

strlen: 360             loadbyte (r2), r3
…
420               jump (r31)

… 

x: 1108                a b c \0
…

physical memory  for  strlen(x)

x:     108                a b c \0
…

Main: 4240                store 1108, r2
4244                 store pc+8, r31
4248                 jump 360
424c
…

strlen: 4360             loadbyte (r2), r3
…
4420               jump (r31)

…     
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Segmentation

u Pros
l Provides logical protection: programmer “knows program” 

and therefore how to design and manage segments
l Therefore efficient
l Easy to share data

u Cons
l Complex management, programmer burden
l Fragmentation
l Difficult to find the right granularity balance between ease of 

use and efficiency
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Paging

u Use a fixed size unit called 
page instead of segment

u Use page table to translate
u Various bits in each entry
u Context switch

l Similar to segmentation

u What should page size be?
u Pros

l Simple allocation
l Easy to share

u Cons
l Big table
l PTEs even for big holes in 

memory

VPage # offset

Virtual address

...

>
error

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table

page table size

Paging example

virtual memory

a
b
c
d

e
f
g
h

i
j
k
l

physical memory

i
j
k
l

e
f
g
h
a
b
c
d

4

3

1

page size: 4 bytes

0
4

8

12

16

0
1
2

VP# PP#

32

How Many PTEs Do We Need?

u Assume 4KB page
l Needs “low order” 12 bits to address byte within page

u Worst case for 32-bit address machine
l # of processes ´ 220

l 220 PTEs per page table (~4Mbytes), but there might be 
10K processes. They won’t even fit in memory together

u What about 64-bit address machine?
l # of processes ´ 252

l A page table cannot fit in a disk (252 PTEs = 16PBytes)!

Segmentation with Paging

VPage # offset

Virtual address

...

>

PPage# ...

PPage# ...

...

PPage # offset

Physical address

Page table
seg size

...

Vseg #

error

Every segment has 
its own page table. 
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Multiple-Level Page Tables

Directory ...

pte

...

...

...

dir table offset
Virtual address

What does this buy us? 

Intel 30386 address translation

Segmentation with paging. 
with a two-level paging 
scheme.
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Inverted Page Tables

u Main idea
l One PTE for each 

physical page frame
l Hash (Vpage, pid) to 

Ppage#

u Pros
l Small page table for 

large address space
u Cons

l Lookup is difficult 
l Overhead of managing 

hash chains, etc

pid vpage offset

0

k

n-1

k offset

Virtual 
address

Physical 
address

Inverted page table

pid vpage
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Making Translation Lookups Faster: TLBs

u Programs only know virtual addresses
l Each program or process starts from 0 to high address

u Each virtual address must be translated
l May involve walking through a hierarchical page table
l Since the page table is in memory, a program memory 

access may requires several actual memory accesses
u Solution

l Cache recent virtual to physical translations, i.e. 
“active” part of page table, in a very fast memory

l If virtual address hits in TLB, use cached translation
l Typically fully associative cache, match against entries
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TLB and Page Table Translation

TLB

Physical
Memory

Virtual
Address

Virtual
Address

Frame Frame

Raise
Exception

Physical
Address

Hit
Valid

Processor Page
Table

Data

Data

Miss Invalid

Offset
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Translation Look-aside Buffer (TLB)

offset

Virtual address

...

PPage# ...

PPage# ...

PPage# ...

PPage # offset

Physical address

VPage #

TLB

Hit

Miss

Real
page
table

VPage#
VPage#

VPage#
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Bits in a TLB Entry

u Common (necessary) bits
l Virtual page number
l Physical page number: translated address
l Valid bit
l Access bits: kernel and user (none, read, write)

u Optional (useful) bits
l Process tag
l Reference bit
l Modify bit
l Cacheable bit
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Hardware-Controlled TLB

u On a TLB miss
l If the page containing the PTE is valid (in memory), 

hardware loads the PTE into the TLB
• Write back and replace an entry if there is no free entry

l Generate a fault if the page containing the PTE is 
invalid, or if there is a protection fault

l VM software performs fault handling
l Restart the CPU

u On a TLB hit, hardware checks the valid bit
l If valid, pointer to page frame in memory
l If invalid, the hardware generates a page fault

• Perform page fault handling
• Restart the faulting instruction
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Software-Controlled TLB

u On a miss in TLB, software is invoked
l Write back if there is no free entry
l Check if the page containing the PTE is in memory
l If not, perform page fault handling
l Load the PTE into the TLB
l Restart the faulting instruction

u On TLB hit, same as in hardware-controlled TLB
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Cache vs. TLB

u Similarities
l Cache a portion of memory
l Write back on a miss

u Differences
l Associativity
l Consistency

Vpage # offset

TLB

ppage # offset

Memory

Hit

Miss

Cache

Address Data

Hit

Memory

Miss
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TLB Related Issues

u What TLB entry to replace?
l Random
l Pseudo LRU

u What happens on a context switch?
l Process tag: invalidate appropriate TLB entries
l No process tag: Invalidate the entire TLB contents

u What happens when changing a page table entry?
l Change the entry in memory
l Invalidate the TLB entry

Summary: Virtual Memory

u Virtual Memory
l Virtualization makes software development easier and enables 

memory resource utilization better
l Separate address spaces provide protection and isolate faults

u Address Translation
l Translate every memory operation using table (page table, 

segment table). 
l Speed: cache frequently used translations

u Result
l Every process has a private address space
l Programs run independently of actual physical memory 

addresses used, and actual memory size
l Protection: processes only access memory they are allowed to


