12/11/19

Virtual Machines
o2 06@
¢ We have seen how the OS virtualizes subsystems
COS 318: Operating Systems ¢ CPU, Memory, IO
. . . e To give applications illusions about owning the system
. . . e The OS knows all
Virtual Machine Monitors
¢ What about:
e Virtualizing the whole system
e Giving OSes the illusion of a system that isn’t real
e The OS doesn’t know all
¢ Why do this?
e To enable multiple OSes to run "at the same time” on the

Jaswinder Pal Singh and a Fabulous Course Staff
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall13/cos318/ same hardware, sharing resources without harming anyone
= = :
1 2
The Idea Virtual Machine Monitor (VMM)
2 06@ 2 06@
¢ Sits between multiples OSes and hardware (or a host OS)
processes ¢ Presents a hardware interface to the OSes above
processes ¢ Gives the illusion to each OS above that it controls the

whole machine

processes e Actually, the VMM does, and each OS sees a virtual machine

processes

ﬂ ﬂ ﬂ e The VMs (and OSes) share the actual hardware resources
i programming~" NN IR B ¢ Manages (multiplexes) resources among several virtual
k:r:el " nteriace R ey vy machines (VMs)
N aaacnie # Isolates VMs from each other
S HAlUSE ¢ Similar to what an OS does: abstraction, resource mgmt
(a) (b)

¢ a.k.a. Hypervisor
‘Who implements the virtual machine, and knows all, if not OS?

5
')
I 0
g
IS

w

12/11/19

History

o 0 @
+ Have been around since 1960’ s on mainframes

e Used to run apps on different OSes on same (very
expensive) mainframe

e Good example — VM/370
+ Computers became cheaper, people lost interest

+ Have resurfaced on commodity platforms
e Server Consolidation: save space, power; data centers
e High-Performance Compute Clusters: run different OSes
e Managed desktop / thin-client
+ Save desktop in a VM and bring it with you on a USB drive
e Software development / kernel hacking
+ Crash your development kernel but don’t disable whole machine

= s

Goals

+ Manageability

+ Performance

+ Scalability

+ Reliability

e Creation, maintenance, administration, provisioning, etc.
e Overhead of virtualization should be small
+ Isolation, like separate physical machines

e Activity of one VM should not impact other active VMs
e Data of one VM is inaccessible by another

e Minimize cost per VM; run more VMs on hardware

Same goals as for many susbystems

5 6
VMM Types VMM Types
LN |
M
Type] VMM Type II VMM
Applications
VM1 VM2
Applications Applications
guest guest quest
o p— - application application application
Guest Applications licat ‘ licati ‘ plicati guest operating system

Operating
System

Native Operating System

~

guest operating system

virtual-machine monitor (VMM)

virtual-machine monitor (VMM)

host operating system

host hardware

host hardware

Type I VMM

Type VMM

12/11/19

Virtualization Styles

(Yo}

= 0

L |
¢ Fully virtualizing VMM

e Virtual machine looks exactly like a (some) physical machine
+ Not necessarily exactly like the underlying hardware itself
e Run guest OS unchanged

e VMM is transparent to the OS

¢ Para- virtualizing VMM

Guest OS is changed to cooperate with VMM

Sacrifice transparency for better performance

E.g. VMM can provide idealized view of some hardware

E.g. VMM can provide “hypervisor API” so guest can perform
certain functions, e.g. with optimizations for performance

0@
Server Virtualization Usage Across Company Sizes
(August 2016)
W vvware vy xenserver [l
sSPRICEWOIRKS 1

11

VMM Classification
o2 06@
Type | Type ll
VMware Workstation,
Fully-virtualized | VMware ESX (stand | Fusion. Parallels
alone, Windows Desktop
Hyper V (with OS) | virtualBox, Virtual PC
Para-virtualized Xen User Mode Linux
gﬁg "
10
VMM Implementation
0@

Should efficiently virtualize the hardware
¢ Provide illusion of multiple machines
¢ Retain control of the physical machine

Subsystems

¢ Processor Virtualization
1/O virtualization

¢ Memory Virtualization

2

12/11/19

Processor Virtualization Example: System Call (Type 1 Hypervisor)
L | L |
Popek anq .Gol_dberg (.1974) . B Ooerating § viam,
e Sensitive instructions: only executed in kernel mode 1.System call: Trap to OS
e Privileged instructions: trap when run in user mode 2. Process trapped: call OS
. " trap handler (at reduced
e CPU architecture is virtualizable only if sensitive privilege)
instructions are subset of privileged instructions 3. OS trap handler: Decode
+ i.e. sensitive instructions will always trap if run in user mode rab and execute syscall;
frrom-trap
: B 4. OS tried to return from
° Whep_gus_zst OS,_whlch runs in user mode,_runs_a _ trap: do real return-from-trap
sensitive instruction, must trap to VMM so it maintains 5. Resume execution (@PC
control after trap)

1 14
5 ;g 8 g 8

&= St
13 14
What if not fully virtualizable? I/O Virtualization
0@ 0@
+ x86 architecture was not fully virtualizable + Issue: lots of 1/O devices
e Certain privileged instructions behave differently when + Problem: Writing device drivers for all I/O device in

run in unprivileged mode, e.g. do nothing (e.g. POPF)

e Certain unprivileged instructions can access privileged
state (so guest OS would be able to see that it's not
running in kernel mode)

the VMM layer is not a feasible option

+ Insight: Device driver already written for popular
Operating Systems

+ One Solution:
e Present virtual 1/0 devices to guest VMs

e Channel I/O requests to a trusted host VM running a popular
OS that has the device drivers

+ Techniques to address

e Replace non-virtualizable instructions with easily
virtualized ones statically (Paravirtualization)

e Perform Binary Translation (Full Virtualization)

y 15
ol

15 16

<

d
>

[

12/11/19

I/0O Virtualization Memory Virtualization

L |
¢ Traditional way is to have the VMM maintain a shadow of
the VM’ s page table

¢ The shadow page keeps mapping from virtual pages
H ‘ within a VM to real physical pages

¢ When VM tries to change MMU to point to a specific

‘ H page table, this traps to VMM which updates MMU to
Device e Guest 0S [Guest 0S] Guest 0S GueleS
Driver OS
(
((

Dom0

point to the shadow page table
e Shadow PT has actual mappings between virtual pages in VM
Physical Devices and real physical pages in machine

¢ Keeping shadow page table in sync with guest PT:

VMM + Device Drivers]

Physical Devices

e When guest OS updates page table, VMM updates shadow
(a) Virtual DD, channel to guest OS (b) Integrate DD with VMM e E.g. pages of guest OS page table marked read-only
-e.g. Xen - e.g. Vmware ESX (Linux DDs)
%@g 17 &@g 18
17 18

Case Study: VMware ESX Server ESX Server — CPU Virtualization

0@
¢ Type | VMM - Runs on bare hardware + Most user code executes in Direct Execution

mode; near native performance
¢ Full-virtualized — Legacy OS can run unmodified on top of

ESX server . . .
+ For kernel code, uses runtime Binary Translation
i for x86 virtualization
¢ Fully controls hardware resources and provides good
performance

e Privileged mode code is run under control of a Binary
Translator, which emulates problematic instructions

e Fast compared to other binary translators as source and
destination instruction sets are nearly identical

= 20
Ién ezl

12/11/19

ESX Server — Memory Virtualization
L |

¢ Maintains shadow page tables with virtual to machine
address mappings.

¢ Shadow page tables are used by the physical processor

¢ ESX maintains a “pmap” data structure for each VM,
which holds “physical” to machine address mappings

¢ Shadow page tables are kept consistent with pmap

¢ With pmap, ESX can easily remap a physical to machine
page mapping, without guest VM knowing the difference

%@%* 21

ESX Server — Memory Mgmt
o2 06@
¢ Page reclamation
e Problem: VMM does not have as good information on page
usage as guest OS, for actual page replacement algorithms
e Solution: Ballooning technique
* Reclaims memory from other VMs when memory is
overcommitted
¢ Page sharing
e Many VMs will use the same pages
e Solution: — Content based sharing
e Eliminates redundancy and saves memory pages when VMs
use same operating system and applications

%@%* 22

21

22

ESX Server- Ballooning

inflate balloon

may page out
(+ pressure)

Guest OS to virtual disk

Guest OS

deflate balloon
(- pressure)

guest OS manages memory
implicit cooperation

may page in

Guest OS _from virtual disk

23

N B
wé&

ESX Server — Page Sharing

u11ul1)l11 hash page contents

VM 1 VM 2 . VM 3

hint frame

—l Hash: ...06af |,
VM: 3

PPN: 43f8
MPN: 123b

Machine
Memory

* Copy-on-write for writing shared pages

24
R

12/11/19

Real World Page Sharing

Total Saved

Workload Guest Types | MB | MB %

Corporate IT |10 Windows | 2048 | 673| 329
Nonprofit Org | 9 Linux 1846 | 345| 18.7
VMware 5 Linux 1658 | 120 7.2

Corporate IT - database, web, development servers (Oracle, Websphere, IS, Java, etc.)
Nonprofit Org — web, mail, anti-virus, other servers (Apache, Majordomo, MailArmor, etc.)
Iware — web proxy, mail, remote access (Squid, Postfix, RAV, ssh, etc.)

=

25

ESX Server — I/0O Virtualization

L |
+ Has highly optimized storage subsystem for networking
and storage devices

e Directly integrated into the VMM

e Uses device drivers from Linux kernel to talk directly to device
¢ Low performance devices are channeled to special

“host” VM, which runs a full Linux OS

[Guest OS] GueleS GusleS I

Dom0 ‘

GuestOS || Guestos
VMM
Physical Devices

Device
Driver 0S

(VMM + Device Drlvers)

Physical Devices)

26

25

VMware Workstation

¢ Type Il VMM - Runs on host operating system

¢ Full-virtualized — Legacy OS can run unmodified on
top of VMware Workstation

¢ Appears like a process to the Host OS

27

N [
\lé&

Workstation - Virtualization

¢ CPU Virtualization and Memory Virtualization
e Uses Similar Techniques as the VMware ESX server

¢ 1/O Virtualization
e Workstation relies on the Host OS for satisfying I/O
requests
e |/O incurs huge overhead as it has to switch to the Host OS
on every IN/OUT instruction.
e E.g., Virtual disk maps to a file in Host OS

28
ol

28

12/11/19

Workstation — Virtualize NIC

=

L |

Virtual[NIC (00 Virtual Virtual[NIC 00
| 1 5
Virtual Network Hub (Virtual Network Hub £
3
(Host-Only) Host OS, (Bridged) £
VMDriver & w
VMApp Virtual 3
Virtial Nl VMNet Driver VMNet Driver | Bridge Z
1 o

Hardware
Physical NIC

29

29

Xen

¢ Type | VMM
¢ Para-virtualized
¢ Open-source

¢ Designed to run about 100 virtual machines on a single
machine

=

30

30

Xen — CPU Virtualization

¢ Privileged instructions are para-virtualized by requiring
them to be validated and executed with Xen
¢ Processor Rings
e Guest applications run in Ring 3
e Guest OS runs in Ring 1 (not ring 0 as without virtualization)
e Xen runs in Ring 0
e So if guest OS executes privileged instruction, it traps to Xen

31

Xen — Memory Virtualization(1)

< Initial memory allocation is specified and memory is
statically partitioned

¢ A maximum allowable reservation is also specified.

¢ Balloon driver technique similar to ESX server used to
reclaim pages

32

12/11/19

Xen — Memory Virtualization(2)

¢ Guest OS is responsible for allocating and managing
hardware page table

¢ Xen involvement is limited to ensure safety and isolation

¢ OS maps Xen VMM into the top 64 MB section of every

address space to avoid TLB flushes when entering and
leaving the VMM

33

E

Xen — 1/O Virtualization

o2 06@
¢ Xen exposes its own set of clean and simple device

abstractions — doesn’t emulate existing devices

¢ |/O data is transferred to and from each domain via Xen,
using shared memory, asynchronous buffer descriptor
rings

¢ Xen supports lightweight event delivery mechanism used
for sending asynchronous notifications to domains

Summary

¢ Classifying Virtual Machine Monitors
e Type | vs. type Il
e Full vs. para-virtualization

¢ Processor virtualization

¢ Memory virtualization

¢ /O virtualization

