COS 318: Operating Systems

0% ke Systems: Networked,

Abstractions and Protection
Jaswinder Pal Singh and a Fabulous Course Staff
Computer Science Department

Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

~ R

Traditional Data Center Storage Hierarchy

Remote
mirror

Offsite

Onsite backup

Backup

"R

Topics

0@
+ What'’s behind the file system: Networked Storage

hierarchy
+ More on the file system abstraction
+ File system protection

2

Evolved Data Center Storage Hierarchy

S Remote

e Attached W/ snapshots mirror
Clients Storage Wrotect data

(NAS)

Onsite '
Backup

Alternative with no Tape

[T

E Attached | W/ snapshots
Clients Storage to protect data
(NAS)

Onsite [Fammp
Backup ':H

“Deduplication” m

Capacity and
bandwidth
optimization

Remote
mirror

Remote
Backup

=

"R

Network File System

+ Multiple clients share an NFS server
¢ NFS v2 was introduced in early 80s

2

Clients

i

NFS server

"R

“Public Cloud” Storage Hierarchy

Geo-plex

~ Clients Examples: Google GFS, Spanner,
Apple Cloud, Amazon S3, Box,
Dropbox, Mozy, etc

NFS Protocols

® 0 ¢
+ Mounting
o NFS server can expose /
directories for remote access
/dev u /bin

e Client sends a mount request
with path name to server

e Server returns a handle (file
system type, disk, i-node of /u/cos126 /u/cos318
directory, security information) Client

e Automount
+ Directory and file accesses
e No open and close

proj

e Use handles to read and write

Server

0o

IS

g

NFS Protocol (v3)

NULL: Do nothing

2. GETATTR: Get file attributes
3. SETATTR: Set file attributes

LOOKUP: Lookup filename

5. ACCESS: Check Access Permission
5. READLINK: Read from symbolic link
. READ: Read From file

3. WRITE: Write to file

9. CREATE: Create a file

10.MKDIR: Create a directory
11.SYMLINK: Create a symbolic link
12.MKNOD: Create a special device
13.REMOVE: Remove a File

RMDIR: Remove a Directory

15. RENAME: Rename a File or Directory
16.LINK: Create Link to an object

17.READDIR: Read From Directory

18. READDIRPLUS: Extended read from directory
19.FSSTAT: Get dynamic file system information
20.FSINFO: Get static file system Information
21.PATHCONF: Retrieve POSIX information

COMMIT: Commit cached data on a server to
stable storage

©

NFS Client Caching Issues

+ Consistency among multiple client caches

e Client cache contents may not be up-to-date
e Multiple writes can happen simultaneously

¢ Solutions

e Expiration

+ Read-only file and directory data (expire in 60 seconds)

+ Data written by the client machine (write back in 30 seconds)
e No shared caching

+ Afile can be cached at only one client cache
e Network lock manager

+ Sequential consistency (one writer or N readers)

11

NFS Architecture

® 0 ¢
NFS Server Client kernel
Virtual file system Virtual file system
Lo‘cal Lolcal NIT=S NILS LoL:aI Lo‘cal
F‘S FlS server cIiTnt F‘S F‘S
Buffer cache Buffer cache
\ { \ \

10

NFS Protocol Development

¢ Version 2 issues
e 18 operations
e Size: limit to 4GB file size
e Write performance: server writes data synchronously
e Several other issues
¢ Version 3 changes (a lot of products still use this)
e 22 operations
e Size: increase to 64 bit
e Write performance: WRITE and COMMIT
e Fixed several other issues
o Still stateless
¢ Version 4 changes
e 42 operations
e Solve the consistency issues
e Stateful

12

Topics

+ What'’s behind the file system: networked storage
hierarchy

+ More on the file system abstraction
+ File system protection

13

Volume Manager

+ Group multiple storage partitions into a logical volume
e \Virtualization of capacity and performance
+ No need to deal with physical disk or sector numbers
¢ Read(vol#, block#, buf, n)
+ Reliable block storage
e Include RAID, tolerating device failures
e Provide error detection at block level
+ Remote abstraction
e Block storage in the cloud
o Remote volumes for disaster recovery
o Remote mirrors can be split or merged for backups
+ How to implement?
® OS kernel: Windows, OSX, Linux, etc.
e Storage subsystem: EMC, Hitachi, HP, IBM, NetApp

Revisit File System Abstractions

+ Network file system
e Map to local file systems
e Exposes file system API
e NFS, CIFS, etc

¢ Local file system

e Implement file system abstraction on
block storage

e Exposes file system API

Local File System

Volume Manager

i fifn]

+ Volume manager
e Logical volumes of block storage
e Map to physical storage
e RAID and reconstruction
e Exposes block API

+ Physical storage
e Previous lectures

14

File versus Block Abstractions

® 0 ¢
File abstraction Disk/Volume abstraction
+ Byte oriented + Block oriented
+ Named files + Block numbers
+ Users protected from each + No protection among users of
other the system

+ Robust to machine failures + Data might be corrupted if
machine crashes

+ Emulate block storage ¢ Support file systems, database
interface systems, etc.

File Abstraction: File Structures

+ Byte sequence
e Read or write N bytes
e Unstructured or linear
+ Record sequence
e Fixed or variable length

o Read or write a number of
records

+ Tree
e Records with keys

e Read, insert, delete a record
(typically using B-tree)

17

File Abstraction: File Operations

+ Operations for “sequence of bytes” files
e Create: create a file (mapping from a name to a file)
Delete: delete a file
Open: including authentication
Close: done with accessing a file
Seek: jump to a particular location in a file
Read: read some bytes from a file
Write: write some bytes to a file
e A few more operations on directories: later
+ Implementation challenges
e Keep disk accesses low
e Keep space overhead low

19

File Abstraction: File Types
® 0 ¢
+ ASCII
¢ Binary data
e Record
e Tree
e An Unix executable file
« header: magic number, sizes, entry point, flags
« text
+ data
« relocation bits
+ symbol table
+ Devices
« Character special files (to model terminals, printers)
+ Block special files (to model disks)
+ Everything else in the system
18
File Access Patterns
® 0 ¢
+ Sequential (the common pattern)
e File data processed sequentially
e Example: Editor writes out a file
+ Random access
e Access a block in file directly
e Example: Read a message in an inbox file
+ Keyed access
e Search for a record with particular values
e Usually not provided by today’ s file systems
e Examples: Database search and indexing

File system abstraction

+ Directory

e Group of named files or subdirectories

e Mapping from file name to file metadata location
¢ Path

e String that uniquely identifies file or directory

e Ex: /cse/www/education/courses/cse451/12au
¢ Links

e Hard link: link from name to metadata location

e Soft link: link from name to alternate name
+ Mount

e Mapping from name in one file system to root of another

21

VM Page Table vs. File System Metadata

o 09

Page table File metadata
+ Manage the mappings of an + Manage the mappings of files

addre§s space) + Map byte offset to disk block
+ Map virtual to physical page # address
+ Check access permission and + Check access permission and illegal

illegal addressing addressing
+ TLBdoesitall in one cycle + Implemented in software, may

cause 1/Os

File System vs. Virtual Memory

+ Similarity
e Location transparency
e Size "obliviousness"
e Protection

+ File system is easier than VM in some ways
e File system mappings can be slow

e Files are dense and mostly sequential, while page tables deal
with sparse address spaces and random accesses

+ File system is more difficult than VM in some ways
e Each layer of translation causes potential 1/0s

Memory space for caching is never enough

File size range vary: many < 10k, some > GB

Implementation must be reliable

@g 16

22

Topics

*
*
+ File system protection

Protection: Policy vs. Mechanism

+ Policy is about what
+ Mechanism is about how
+ A security policy defines acceptable and unacceptable

behaviors. Examples:

+ A given user can only allocate 4GB of disk storage
* No one but root can write to the password file
« A user is not allowed to read others’ mail files

+ A protection system is the mechanism to enforce a
security policy

e Same set of choices, no matter what policies

« Principle of least privilege

b .

25

Authentication
o0 4@

+ Usually done with passwords
o Relatively weak, because you must remember them

+ Passwords are stored in an encrypted form
e Use a “secure hash” (one way only)
+ Issues

e Passwords should be obscure, to prevent “dictionary
attacks”

e Each user has many passwords

+ Alternatives?

& 19

27

Protection Mechanisms

+ Authentication
e |dentity check
 Unix: password
« Credit card: last 4 digits of credit card # + SSN + zipcode
« Airport: driver’ s license or passport
+ Authorization
e Determine if x is allowed to do y
e Need a simple database
+ Access enforcement
e Enforce authorization decision
e Must make sure there are no loopholes

26

Protection Domain

+ Once identity known, provides rules

e E.g. what is Bob allowed to do?
e E.g. who can do what to file A?

+ Protection matrix: domains and resources

File A Printer B File C

Domain 1 R W RW
Domain 2 RW W
Domain 3 R RW

20

By Columns: Access Control Lists (ACLs)

+ Each object has a list of
<user, privilege> pairs

+ ACL is simple, implemented in most systems
e Owner, group, world

+ Implementation considerations
e Stores ACLs in each file
e Use login authentication to identify
e Kernel implements ACLs

+ Any issues?

21

29

Access Enforcement

e Enforce access controls
e Protect authorization information
+ Kernel is the trusted party
e This part of the system can do anything it wants
e |f there is a bug, the entire system could be destroyed
e Want it to be as small & simple as possible

+ Security is only as strong as the weakest link in the
protection system

23

o060
+ Use a trusted party to

31

By Rows: Capabilities

+ For each user, there is a capability list
o A lists of <object, privilege> pairs

+ Capabilities provide both naming and protection

e Can only “see” an object if you have a capability
+ Implementation considerations

e Architecture support

e Capabilities stored in the kernel

e Capabilities stored in the user space in encrypted format
+ Issues?

30

22

Some Easy Attacks

+ Abuse of valid privilege
e On Unix, super-user can do anything
» Read your mail, send mail in your name, etc.
e If you delete the code for COS318 project 5, your partner is not
happy
+ Spoiler/Denial of service (DoS)
e Use up all resources and make system crash
e Run shell script to: “while(1) { mkdir foo; cd foo; }”
+ Listener

e Passively watch network traffic

32

24

No Perfect Protection System

+ Cannot prevent bad things, can only make it difficult to
do them

+ There are always ways to defeat protection
e burglary, bribery, blackmail, bludgeoning, etc.

+ Every system has holes

25

Summary

+ Storage hierarchy can be complex
e Reliability, security, performance and cost
e Many things are hidden
+ Key storage layers above hardware
e Volume or block storage
e Local file system
o Network file system
+ Protection
e ACL is the default in file systems
e More protection is needed in the cloud

34

