
11/11/19

1

COS 318: Operating Systems

File Structure

Jaswinder Pal Singh and a Fabulous Course Staff
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

1

Where Are We?
• Covered:

● Management of CPU & concurrency
● Management of main memory & virtual memory
● Management of I/O devices

• Currently --- File Systems
● This lecture: File Structure

• Then:
• Naming and directories
• Efficiency and performance
• Reliability and protection

2

The File System Abstraction

Physical Reality File System Abstraction

block oriented byte oriented (char stream)

physical sector #’s named files

no protection users protected from
each other

data might be corrupted robust to machine failures
if machine crashes

• Open, close, read, write … named files, arranged in folders
or directories

3

4

File System

◆ Naming
● File name and directory

◆ File access
● Read, write, other operations

◆ Buffer cache
● Reduce client/server disk I/Os

◆ Disk allocation
◆ Layout, mapping files to blocks

◆ Security, protection, reliability, durability

◆ Management tools

File naming

File access

Buffer cache

Disk allocation

Disk Drivers

M
an

ag
em

en
t

4

http://www.cs.princeton.edu/courses/cos318/

11/11/19

2

2

Topics

◆ File system structure
◆ Disk allocation and i-nodes
◆ Directory and link implementations
◆ Physical layout for performance

5

Typical File Attributes

• Name
• Type – needed for systems that support different types
• Location – pointer to file location on device.
• Size – current file size.
• Protection – controls who can read, write, execute
• Time, date, and user identification – data for protection,

security, and usage monitoring

• Information about files are kept in the directory structure,
which is maintained on the disk

6

2

Master Boot Record

• Starts at first sector of disk

• End of record lists the partitions on the disk
● Every partition can have a different file system

• Upon boot:
● BIOS reads in and executes MBR
● Finds active disk partition from MBR
● First block of active partition (boot block) is loaded and executed
● That loads in the OS from that partition

• What does partition and file layout on it look like?

7

Typical Layout of a Disk Partition

◆ Boot block
● Code to load and boot OS

◆ Super-block defines a file system
● File system info: type, no of blocks, ...
● File metadata area
● Information about / ptr to free blocks
● Location of descriptor of root directory

◆ File metadata
● Each descriptor describes a file

◆ Directories
● Directory data (directory and file names)

◆ File data
● Data blocks

3

File metadata
(i-nodes in Unix)

Superblock

Directory data

File data

Boot block

8

11/11/19

3

File Types – Name, Extension

Executable exe, com, bin or
none

ready-to-run machine-
language program

Object obj, o complied, machine
language, not linked

Source code c, p, pas, 177,
asm, a

source code in various
languages

Batch bat, sh commands to the
command interpreter

Text txt, doc textual data documents

Word processor wp, tex, rrf, etc. various word-processor
formats

Library lib, a libraries of routines

Print or view ps, dvi, gif ASCII or binary file

Archive arc, zip, tar related files grouped
into one file, sometimes
compressed.

File Type Usual extension Function

9

Typical File Operations

• Create
• Write
• Read
• Reposition within file – file seek
• Delete
• Truncate
• Open(Fi) – search the directory structure on disk for

entry Fi, and move the content of entry to memory.
• Close (Fi) – move the content of entry Fi in memory to

directory structure on disk.

10

5

Open A File: Open(fd, name, access)

◆ Various checking (directory and file name lookup, authenticate)
◆ Copy the file descriptors into the in-memory data structure
◆ Create an entry in the open file table (system wide)
◆ Create an entry in PCB
◆ Return user a pointer to “file descriptor”

Open-file table
(system-wide)

File
metadata

File system
info

Directories

File data

File
descriptors
(Metadata)

Process
control
block

...

Open
file

pointer
array

11

Translating from user to system view

• User wants to read 10 bytes from file starting at byte 2?
● Seek byte 2, fetch the block, read 10 bytes

• User wants to write 10 bytes to file starting at byte 2?
● Seek byte 2, fetch the block, write 10 bytes, write out block

• Everything inside file system is in whole size blocks
● Even getc and putc buffers 4096 bytes

• From now on, file is collection of blocks.

13

11/11/19

4

File usage patterns

• How do users access files?
● Sequential: bytes read in order
● “Random”: read/write element out of middle of file
● Content-based access: find me next byte starting with “COS318”

• How are files used?
● Most files are small
● Large files use up most of the disk space
● Most transfers are small
● Large files account for most of the bytes transferred

• Bad news
● Need everything to be efficient

14

File system design constraints

• For small files:
● Small enough blocks for storage efficiency
● Files used together should be stored together

• For large files:
● Contiguous allocation for sequential access
● Efficient lookup for random access

• May not know at file creation whether file will become
small or large

15

File system design

• Data structures
● Directories: file name -> file metadata

• Store directories as files
● File metadata: used to find file data blocks of the file
● Free map: list of free disk blocks

• How do we organize these data structures?

16

Data structures for disk management

• A file header for each file (part of the file meta-data)
● Disk sectors associated with each file

• A data structure to track free space on disk
● Bit map

• 1 bit per block (sector)
• blocks numbered in cylinder-major order, why?

● Linked list
● Others?

• What about allocation for the blocks associated with a file?

18

11/11/19

5

7

Contiguous Allocation
◆ Allocate contiguous blocks of

storage
● Bitmap: find N contiguous 0’s
● Linked list: find a region (size >= N)

◆ File metadata
● First block in file
● Number of blocks

◆ Pros
● Fast sequential access
● Easy random access

◆ Cons
● External fragmentation

(what if file C needs 4 blocks)
● Hard to grow files

3

File A File B

19

8

Linked Files

◆ File structure (Alto)
● File metadata points to 1st block

on storage
● A block points to the next
● Last block has a NULL pointer

◆ Pros
● Can grow files dynamically
● File data tracked similarly to free

list of blocks
● Doesn’t waste space

◆ Cons
● Random access: bad
● Unreliable: losing a block means

losing the rest

File header

null

. . .

20

Linked files (cont’d)

21

8

File Allocation Table (FAT)

• Idea is to keep the linked list metadata
(pointers) in memory, rather than on disk

• Allocation table at beginning of each volume
◆ N entries for N blocks
◆ Want to keep it in memory

• File structure (MS-DOS)
● A file is a linked list of blocks
● File metadata points to first block of file
● The entry of first block points to next, …

• Pros
● Simple

• Cons
● Random access: still not good
● Wastes space - table for each file

expensive to keep in memory

217 619

399

foo 217

EOF

FAT Allocation Table

0

399

619

22

11/11/19

6

11

DEMOS (Cray-1)

◆ Idea
● Try contiguous allocation
● Allow non-contiguous

◆ File structure
● Small file metadata has 10 (base,size) pointers
● Big file has 10 indirect pointers

◆ Pros & Cons
● Can grow
● Fragmentation

File metadata

size9

size1

size0

size9

size1

size0

size9

size1

size0

size9

size1

size0

25

Single-level Indexed File

• User declares max size
• File header holds array of pointers

to disk blocks

• Pros:
● Can grow up to a limit
● Random access is fast
● No external fragmentation

• Cons:
● Clumsy to grow beyond limit
● Still lots of seeks

File header
Disk
blocks

26

Single-level indexed files (cont’d)

27

Multi-level Indexed Files

!

outer-index

index table file

28

11/11/19

7

12

Hybrid Multi-level Indexed Files (Unix)

◆ 13 Pointers in a header
● 10 direct pointers
● 11: 1-level indirect
● 12: 2-level indirect
● 13: 3-level indirect

◆ Pros & Cons
● In favor of small files
● Can grow
● Limit is 16G
● Can have lots of seeking

1
2

data

data
...

11
12
13

data
...

... data
...

... data
...

...

29

13

Original Unix i-node

◆ Mode: file type, protection bits, setuid, setgid bits
◆ Link count: no. of directory entries pointing to this file
◆ Uid: uid of the file owner
◆ Gid: gid of the file owner
◆ File size
◆ Times (access, modify, change)

◆ 10 pointers to data blocks
◆ Single indirect pointer
◆ Double indirect pointer
◆ Triple indirect pointer

30

14

Extents
◆ An extent is a variable number of

blocks
◆ Main idea

● A file is a number of extents
● XFS uses 8Kbyte blocks
● Max extent size is 2M blocks

◆ Index nodes need to have
● Block offset
● Length
● Starting block

• Microsoft NTFS, Linux EXT4, …
◆ Pros: little metadata, fast seq

access, can grow over time, less
fragmentation

◆ Cons: external fragmentation still
problem

Block offset
length

Starting block

. . .

31

15

Naming Files

Can name files via:
◆ Index (i-node number): Not easy for users to specify
◆ Text name: Need to map it to index
◆ Icon: Need to map it to index or to text and then to index

◆ Directories
◆ Table of file name, file index pairs
◆ Map name to file index (where to find the header)
◆ A directory is itself stored as a file

32

11/11/19

8

• Bootstrapping: Where do you start looking?
● Root directory
● inode #2 on the system
● 0 and 1 used for other purposes

• Special names:
● Root directory: “/” (bootstrap name system for users)
● Current directory: “.”
● Parent directory: “..”
● user’s home directory: “~”

• Using the given names, only need two operations to
navigate the entire name space:
● cd ‘name’: move into (change context to) directory “name”
● ls : enumerate all names in current directory (context)

Naming Tricks

33

16

Directory Organization Examples

◆ Flat (CP/M)
● All files are in one directory

◆ Hierarchical (Unix)
● /u/cos318/foo
● Directory is stored in a file containing (name, i-node) pairs
● The name can be either a file or a directory

◆ Hierarchical (Windows)
● C:\windows\temp\foo
● File extensions have meaning (unlike in Unix). Use the

extension to indicate whether the entry is a directory

34

17

Mapping File Names to i-nodes

Need to support the following types of operations:

◆ Create/delete
● Create/delete a directory

◆ Open/close
● Open/close a directory for read and write

◆ Link/unlink
● Link/unlink a file

◆ Rename
● Rename the directory

35

18

Linear List

◆ Method
● <FileName, i-node> pairs are

linearly stored in a file
● Create a file

• Append <FileName, i-node>
● Delete a file

• Search for FileName
• Remove its pair from the

directory
• Compact by moving the rest

◆ Pros
● Space efficient

◆ Cons
● Linear search
● Need to deal with fragmentation

/u/jps
foo bar …
veryLongFileName

<foo,1234> <bar,
1235> … <very

LongFileName,
4567>

36

11/11/19

9

19

Tree Data Structure

◆ Method
● Store <fileName, i-node> a tree data structure such as B-tree
● Create/delete/search in the tree data structure

◆ Pros
● Good for a large number of files

◆ Cons
● Inefficient for a small number of files
● More space
● Complex

…

37

20

Hashing

◆ Method
● Use a hash table to map

FileName to i-node
● Space for name and metadata

is variable sized
● Create/delete will trigger space

allocation and free

◆ Pros
● Fast searching and relatively

simple

◆ Cons
● Not as efficient as trees for very

large directory (wasting space
for the hash table)

…

foo
bar

1234
1235

foobar 4567

38

21

Number of I/O operations

◆ I/Os to access a byte of /u/cos318/foo
● Read the i-node and first data block of “/”
● Read the i-node and first data block of “u”
● Read the i-node and first data block of “cos318”
● Read the i-node and first data block of “foo”

◆ I/Os to write a file
● Read the i-node of the directory and the directory file (as

above)
● Read or create the i-node of the file
● Read or create the file itself
● Write back the directory and the file

◆ Too many I/Os to traverse the directory
● Solution is to use Current Working Directory (e.g. ./foo)

39

23

Hard Links

◆ Approach
● A link to a file with the same i-node
ln source target

● i.e. the name points to the same i-node
as that of the file being linked to

● Delete may or may not remove the target
depending on whether it is the last one
(link reference count)

◆ Main issue with hard links?

Directory A

i-node

Directory B

Ref=2

40

11/11/19

10

23

Symbolic Links

◆ Approach
● A symbolic link is a pointer to a file
● Use a new i-node for the link
ln –s source target

● Carries pathname of original file

◆ Main issue with symbolic links?
◆ Performance?
◆ What if you delete the link?
◆ What if you delete the original file?

Directory B

Link

Directory A

41

24

Original Unix File System Disk Layout

◆ Simple disk layout
● Block size is sector size (512 bytes)
● i-nodes are on outermost cylinders
● Data blocks are on inner cylinders
● Use linked list for free blocks

◆ Issues
● Index is large due to small block size
● Fixed max number of files
● i-nodes far from data blocks
● i-nodes for directory not close together
● Consecutive blocks of file can be anywhere on disk
● Poor bandwidth (20Kbytes/sec even for sequential access!)

i-node array

42

25

BSD FFS (Fast File System)

◆ Use a larger block size: 4KB or 8KB
● Allow large blocks to be chopped into

fragments, used for small files and pieces at
ends of files

◆ Use bitmap instead of a free list
● Try to allocate contiguously

foo

bar

43

26

FFS Disk Layout

◆ i-nodes are grouped together
● A portion of the i-node array on each cylinder
● In same cylinder group as data for the files
● 10% reserved disk space, to keep room

◆ Do you ever read i-nodes without
reading any file blocks?
● 4 times more often than reading together
● examples: ls, make

◆ Overcome rotational delays
● Skip sector positioning to avoid the context

switch delay
● Read ahead: read next block right after the

first

i-node subarray

44

11/11/19

11

Block Group 0

Block Group 1

Block Group 2

Free Space Bitmap Inodes

Data Blocks for files in directories /a, /d, and /b/c

Inodes

Free Space Bitm
ap

Data Blocks for files in directories /b, /a/g, /z

Data Blocks for files in dire
ct

or
ie

s
/d

/q
, /

c,
 a

nd
 /

a/
p

In
od

es

Free Space B
i tm

ap

FFS block groups for better locality

45

27

What Has FFS Achieved?

◆ Performance improvements
● 20-40% of disk bandwidth for large files (10-20x original)
● Better small file performance (why?)

◆ We can do better
● Extent based instead of block based

• Use a pointer and size for all contiguous blocks (XFS, Veritas
file system, etc)

● Synchronous metadata writes hurt small file performance

46

28

Summary

◆ File system structure
● Boot block, super block, file metadata, file data

◆ File metadata
● Consider efficiency, space and fragmentation

◆ Directories
● Consider the number of files

◆ Links
● Soft vs. hard

◆ Physical layout
● Where to put metadata and data

47

