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Recall Address translation: Base and Bound
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+ Pros: Simple, fast, cheap, safe, can relocate
+ Cons:

« Can’t keep program from accidentally overwriting its own code
« Can't share code/data with other processes (all or nothing)

@ « Can'’t grow stack/heap as needed (stop program, change reg, ...)
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Virtual Memory Design Goals
N
+ Protection

+ Virtualization
e Use disk to extend physical memory
e Make addressing user friendly (O to high address)

+ Enabling memory sharing (code, libraries, communication)

+ Efficiency
e Translation efficiency (TLB as cache)
e Access efficiency
* Access time = h - memory access time + (1 - h ) - disk access time

» E.g. Suppose memory access time = 100ns, disk access time = 10ms
If h =90%, VM access time is 1ms!

+ Portability

Recall Address Translation: Segmentation
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¢ A segment is a contiguous region of virtual memory

+ Every process has a segment table (in hardware)
e Entry in table per segment

+ Segment can be located anywhere in physical memory
e Each segment has: start, length, access permission

+ Processes can share segments
e Same start, length, same/different access permissions
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Segmentation
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» Segments contiguous, but gaps in VM between them Bases
» Segment table small, so stored on-CPU Bound 2
53@5 * Access control on per-segment basis, allows code protection, e.g.
£
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Segmentation
KN

¢ Pros
e Can share code/data segments between processes
e Can protect code segment from being overwritten
e Can transparently grow stack/heap as needed
e Can detect if need to copy-on-write

+ Cons
e Complex memory management due to external fragmentation
» Need to find chunk of particular size
» Wasted space between chunks/segments

» May need to rearrange memory from time to time to make room
for new segment or to grow segment

Segments Enable Copy-on-Write
o060
+ Idea of Copy-on-Write
e Child process inherits copy of parent’s address space on fork
e But don’t really want to make a copy of all data upon fork
e Would like to share as far as possible and make own copy
only “on-demand”, i.e. upon a write
¢ Segments allow this to an extent
e Copy segment table into child, not entire address space
e Mark all parent and child segments read-only
e Start child process; return to parent
e |f child or parent writes to a segment (e.g. stack, heap)

» Trap into kernel
+ At this point, make a copy of the segment, and resume
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Recall Address Translation: Paging
o 0 9q
¢ Manage memory in fixed size units, or pages
¢ Finding a free page is easy
o Effectively a bitmap allocation: 0011111100000001100
e Every bit represents one physical page frame
¢ Every process has its own page table
e Stored in physical memory
e Supported by a couple of hardware registers:
+ Pointer to start of page table
+ Page table length

¢ Recall fancier structures: segmentation+paging, multi-level PT
e Better for sparse virtual address spaces
e E.g. per-processor heaps, per-thread stacks, memory mapped files,
dynamically linked libraries, ...
e Eliminate need for page table entries for address space “holes”
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Multilevel Page Table

Copy on Write with Paging
KN

¢ UNIX fork with copy on write

Copy page table of parent into child process

Mark all pages (in new and old page tables) as read-only
Trap into kernel on write (in child or parent)

Copy page

Mark both as writeable

Resume execution

Finer grained than with segments
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Implementation Physical
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Shared Pages
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¢ PTEs from two processes share

the same physical pages v[ vp# [ pp#

e Entries in both page tables to point to
same page frames

vl vo# | po#t.

e What use cases? v] vp# | pp#

e What if you terminate a process

+ Implementation issues Page table .

with shared pages

v[vp# [ pp#l

e Paging in/out shared pages v vp# | pp#

e Pinning, unpinning shared pages :

e Deriving the working set for a v vp# [ po#
process with shared pages Page table 2

%

Physical
pages
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Pinning (or Locking) Page Frames
_ o080
¢ When do you need it?
e When DMA is in progress, you don’t want to page the pages out
to avoid CPU from overwriting the pages
¢ Mechanism?
e A data structure to remember all pinned pages

e Paging algorithm checks the data structure to decide on page
replacement

e Special calls to pin and unpin certain pages
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Zeroing Pages

+ Initilalize pages to all zero values
e Heap and static data are initialized
¢ How to implement?

e On the first page fault on a data page or stack page, zero it
e Or, have a special thread zeroing pages in the background
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TLB Performance

o 09
¢ Cost of translation =

Cost of TLB lookup + Prob(TLB miss) * cost of page table lookup
¢ Cost of a TLB miss on a modern processor?

e Cost of multi-level page table walk

e Software-controlled: plus cost of trap handler entry/exit

e Use additional caching principles: multi-level caching, etc

TLB is important:

~ Core 0 Corel Core2 . Cora3 #

Intel i7 Processor Chip

Shared L3 Cache
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Efficient address translation

+ Recall translation lookaside buffer (TLB)
e Cache of recent virtual page -> physical page translations
e If cache hit, use translation
e |f cache miss, walk (perhaps multi-level) page table
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Intel i7 Memory hierarchy

Cache Hit Cost Size
1st level cacheffirst level TLB ins  64KB
2nd level cache/second level TLB 4ns 256KB
3rd level cache 12ns 2MB
Memory (DRAM) 100ns 10GB
Data center memory (DRAM) 100pus 100TB
Local non-volatile memory 100ps 100GB
Local disk 10ms 1TB
Data center disk 10ms 100PB
Remote data center disk 200ms 1XB

‘ﬁg i7 has 8MB as shared 31 level cache; 2" level cache is per-core
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Problem with Translation Slowdown

¢ What is the cost of a first level TLB miss?
e Second level TLB lookup

+ What is the cost of a second level TLB miss?
e x86: 2-4 level page table walk

¢ Problem: Do we need to wait for the address translation
in order to look up the caches (for code and data)?
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Virtually addressed caches
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Virtually vs. Physically Addressed Caches
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# It can be too slow to first access TLB to find physical

address, then look up address in the cache
¢ Instead, first level cache is virtually addressed
+ In parallel with cache lookup using virtual address,

access TLB to generate physical address in case of a
cache miss
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Physically addressed cache
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When do TLBs work/not work?
0@
Video Frame Buffer
¢ Video Frame Pages
Buffer: 32 bits x 0
1K x 1K = 4MB ;
3
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Superpages
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Superpages

¢ On many systems, TLB entry can be
e A page
e A superpage: a set of contiguous pages

¢ x86: superpage is a set of pages in one page table
e x86 TLB entries
« 4KB
- 2MB
- 1GB
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When do TLBs Work/Not Work, Part 3
oo0¢

¢ What happens on a context switch?
e Keep using TLB?
e Flush TLB?
+ Solution: Tagged TLB
e Each TLB entry has process ID
e TLB hit only if process ID matches current process

Implementation Physical
Memory

rrrrr




Aliasing
o060
¢ Alias: two (or more) virtual cache entries that refer to the
same physical memory
e A consequence of a tagged virtually addressed cache!
e A write to one copy needs to update all copies

+ Typical solution

e Keep both virtual and physical address for each entry in
virtually addressed cache

e Lookup virtually addressed cache and TLB in parallel

e Check if physical address from TLB matches multiple entries,
and update/invalidate other copies
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Summary
o0
+ Must consider many issues
e Global and local replacement strategies
e Management of backing store
e Primitive operations
 Pin/lock pages
» Zero pages
» Shared pages
» Copy-on-write
¢ Real system designs are complex
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TLB Consistency Issues

+ “Snoopy” cache protocols (hardware)
e Maintain consistency with DRAM, even when DMA happens
+ Consistency between DRAM and TLBs (software)
e You need to flush related TLBs whenever changing a page
table entry in memory
+ TLB “shoot-down”

e On multiprocessors/multicore, when you modify a page table
entry, need to flush all related TLB entries on all
processors/cores
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