COS 318: Operating Systems

60 Virtual Memory Design Issues:

Address Translation

Jaswinder Pal Singh and a Fabulous Course Staff
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

1

Recall Address translation: Base and Bound

Processor’s View Implementation Physical
Memory
virtual [ase |
Vi Memory . - . Base
irtual Virtual Physical
Address Address 3 Address
Processor [-----: Processor @
.
Base+
Bons
-
Exception
+ Pros: Simple, fast, cheap, safe, can relocate
+ Cons:

« Can’t keep program from accidentally overwriting its own code
« Can't share code/data with other processes (all or nothing)

@ « Can'’t grow stack/heap as needed (stop program, change reg, ...)
a0

4

Virtual Memory Design Goals
N
+ Protection

+ Virtualization
e Use disk to extend physical memory
e Make addressing user friendly (O to high address)

+ Enabling memory sharing (code, libraries, communication)

+ Efficiency
e Translation efficiency (TLB as cache)
e Access efficiency
* Access time = h - memory access time + (1 - h) - disk access time

» E.g. Suppose memory access time = 100ns, disk access time = 10ms
If h =90%, VM access time is 1ms!

+ Portability

Recall Address Translation: Segmentation

906
¢ A segment is a contiguous region of virtual memory

+ Every process has a segment table (in hardware)
e Entry in table per segment

+ Segment can be located anywhere in physical memory
e Each segment has: start, length, access permission

+ Processes can share segments
e Same start, length, same/different access permissions

" e

http://www.cs.princeton.edu/courses/cos318/

Segmentation
o 09
Processor’s View Implementation Physical
Memory
Virtual Base 3
Memory Stack
. Processor Base+
Virtual Bound 3
Address | Code _ Virtual Segment Table
Processorf--; Address Base Bound Access
H ———{ Base 0
“oof segment] Offset | Read
Data H R/W Code
Base+
R/IW Bound 0
R/W
H;
0 ——Base1
Physical Add Pata
o @ ysical ress ¢ l;;a:’sue:d1
Raise
...................................... @i
[|Base2
. . Heap
» Segments contiguous, but gaps in VM between them Bases
» Segment table small, so stored on-CPU Bound 2
53@5 * Access control on per-segment basis, allows code protection, e.g.
£

6

Segmentation
KN

¢ Pros
e Can share code/data segments between processes
e Can protect code segment from being overwritten
e Can transparently grow stack/heap as needed
e Can detect if need to copy-on-write

+ Cons
e Complex memory management due to external fragmentation
» Need to find chunk of particular size
» Wasted space between chunks/segments

» May need to rearrange memory from time to time to make room
for new segment or to grow segment

Segments Enable Copy-on-Write
o060
+ Idea of Copy-on-Write
e Child process inherits copy of parent’s address space on fork
e But don’t really want to make a copy of all data upon fork
e Would like to share as far as possible and make own copy
only “on-demand”, i.e. upon a write
¢ Segments allow this to an extent
e Copy segment table into child, not entire address space
e Mark all parent and child segments read-only
e Start child process; return to parent
e |f child or parent writes to a segment (e.g. stack, heap)

» Trap into kernel
+ At this point, make a copy of the segment, and resume

8

7

Recall Address Translation: Paging
o 0 9q
¢ Manage memory in fixed size units, or pages
¢ Finding a free page is easy
o Effectively a bitmap allocation: 0011111100000001100
e Every bit represents one physical page frame
¢ Every process has its own page table
e Stored in physical memory
e Supported by a couple of hardware registers:
+ Pointer to start of page table
+ Page table length

¢ Recall fancier structures: segmentation+paging, multi-level PT
e Better for sparse virtual address spaces
e E.g. per-processor heaps, per-thread stacks, memory mapped files,
dynamically linked libraries, ...
e Eliminate need for page table entries for address space “holes”

2

w@j
i

Multilevel Page Table

Copy on Write with Paging
KN

¢ UNIX fork with copy on write

Copy page table of parent into child process

Mark all pages (in new and old page tables) as read-only
Trap into kernel on write (in child or parent)

Copy page

Mark both as writeable

Resume execution

Finer grained than with segments

o060

Implementation Physical

Memory

Processor
Virtual [
; Address

>| Index 1 Index 2 Index 3 Offset | rrrrrrrr —

H Physical —

Level 1 Address v 1

T R —

Level 2 —

Level 3 —

10
Shared Pages

® 09

¢ PTEs from two processes share

the same physical pages v[vp# [pp#

e Entries in both page tables to point to
same page frames

vl vo# | po#t.

e What use cases? v] vp# | pp#

e What if you terminate a process

+ Implementation issues Page table .

with shared pages

v[vp# [pp#l

e Paging in/out shared pages v vp# | pp#

e Pinning, unpinning shared pages :

e Deriving the working set for a v vp# [po#
process with shared pages Page table 2

%

Physical
pages

11

Pinning (or Locking) Page Frames
_ o080
¢ When do you need it?
e When DMA is in progress, you don’t want to page the pages out
to avoid CPU from overwriting the pages
¢ Mechanism?
e A data structure to remember all pinned pages

e Paging algorithm checks the data structure to decide on page
replacement

e Special calls to pin and unpin certain pages

12

Zeroing Pages

+ Initilalize pages to all zero values
e Heap and static data are initialized
¢ How to implement?

e On the first page fault on a data page or stack page, zero it
e Or, have a special thread zeroing pages in the background

§?£ 14

14

TLB Performance

o 09
¢ Cost of translation =

Cost of TLB lookup + Prob(TLB miss) * cost of page table lookup
¢ Cost of a TLB miss on a modern processor?

e Cost of multi-level page table walk

e Software-controlled: plus cost of trap handler entry/exit

e Use additional caching principles: multi-level caching, etc

TLB is important:

~ Core 0 Corel Core2 . Cora3 #

Intel i7 Processor Chip

Shared L3 Cache

16

Efficient address translation

+ Recall translation lookaside buffer (TLB)
e Cache of recent virtual page -> physical page translations
e If cache hit, use translation
e |f cache miss, walk (perhaps multi-level) page table

Virtual Virtual
Address Address
Processor TLB [Miss = Page |Invalid
Table

, Raise
Exception

Hit

Valid

Frame Frame

Offset Physical
Memory

@«

Physical
Address

Data

Data

15

Intel i7 Memory hierarchy

Cache Hit Cost Size
1st level cacheffirst level TLB ins 64KB
2nd level cache/second level TLB 4ns 256KB
3rd level cache 12ns 2MB
Memory (DRAM) 100ns 10GB
Data center memory (DRAM) 100pus 100TB
Local non-volatile memory 100ps 100GB
Local disk 10ms 1TB
Data center disk 10ms 100PB
Remote data center disk 200ms 1XB

‘ﬁg i7 has 8MB as shared 31 level cache; 2" level cache is per-core

17

Problem with Translation Slowdown

¢ What is the cost of a first level TLB miss?
e Second level TLB lookup

+ What is the cost of a second level TLB miss?
e x86: 2-4 level page table walk

¢ Problem: Do we need to wait for the address translation
in order to look up the caches (for code and data)?

18

Virtually addressed caches
® 09
Virtual Virtual Virtual
Address) Address Address)
Processor : VAU i TLB Mg erseeeeeeed) Page |Invalid > Ra|se.
H Cache Exception
Table
Hit Hit
i Valid
D;ta Fra;me Fraome
Offset ,_b Physical
Physical Memory
Address
Data
Data

20

Virtually vs. Physically Addressed Caches

06
It can be too slow to first access TLB to find physical

address, then look up address in the cache
¢ Instead, first level cache is virtually addressed
+ In parallel with cache lookup using virtual address,

access TLB to generate physical address in case of a
cache miss

19

Physically addressed cache
o060
Virtual Virtual Virtual
Address Address Address .
Virtual - fypes s TLB [Miss wrreeeeeeens Page |Invali > Raise
Cache Exception
Table
Hit Hit
; Valid
‘ ‘ i
Data Frame Frame
Offset v " .
® o
Physical Physical v
Address Hit Address
Data
M H
Data Data

When do TLBs work/not work?
0@
Video Frame Buffer
¢ Video Frame Pages
Buffer: 32 bits x 0
1K x 1K = 4MB ;
3
1021
1022
1023
K
22
Superpages
o0 ¢

Virtual
Address

Matching Entry ,C_)

Physical
Memory

Translation Lookaside Buffer (TLB)

Superpage Superframe
(SP) or (SF) or
Page# Frame Access

Physical
Address

Matching
Superpage ’@

| Frame ‘ Offset |

N Page Table

e 3 T

24

Superpages

¢ On many systems, TLB entry can be
e A page
e A superpage: a set of contiguous pages

¢ x86: superpage is a set of pages in one page table
e x86 TLB entries
« 4KB
- 2MB
- 1GB

)

%
3

2

When do TLBs Work/Not Work, Part 3
oo0¢

¢ What happens on a context switch?
e Keep using TLB?
e Flush TLB?
+ Solution: Tagged TLB
e Each TLB entry has process ID
e TLB hit only if process ID matches current process

Implementation Physical
Memory

rrrrr

Aliasing
o060
¢ Alias: two (or more) virtual cache entries that refer to the
same physical memory
e A consequence of a tagged virtually addressed cache!
e A write to one copy needs to update all copies

+ Typical solution

e Keep both virtual and physical address for each entry in
virtually addressed cache

e Lookup virtually addressed cache and TLB in parallel

e Check if physical address from TLB matches multiple entries,
and update/invalidate other copies

27

Summary
o0
+ Must consider many issues
e Global and local replacement strategies
e Management of backing store
e Primitive operations
 Pin/lock pages
» Zero pages
» Shared pages
» Copy-on-write
¢ Real system designs are complex

& 30

30

TLB Consistency Issues

+ “Snoopy” cache protocols (hardware)
e Maintain consistency with DRAM, even when DMA happens
+ Consistency between DRAM and TLBs (software)
e You need to flush related TLBs whenever changing a page
table entry in memory
+ TLB “shoot-down”

e On multiprocessors/multicore, when you modify a page table
entry, need to flush all related TLB entries on all
processors/cores

28

28

