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COS 318: Operating Systems

Message Passing

(http://www.cs.princeton.edu/courses/cos318/)

Motivation

u Locks, semaphores, monitors are good but they only 
work under the shared-address-space model
l Threads in the same process
l Processes that share an address space

u We have assumed that processes/threads communicate 
via shared data (counter, producer-consumer buffer, …)

u How to synchronize and communicate among 
processes with different address spaces? 
l Inter-process communication (IPC)

u Can we have a single set of primitives that work for all 
cases: single machine OS, multiple machines same OS, 
multiple machines multiple OS, distributed?

With No Shared Address Space

u No need for explicit mutual exclusion primitives
l Processes cannot touch the same data directly

u Communicate by sending and receiving explicit 
messages: Message Passing

u Synchronization is implicit in message passing
l No need for explicit mutual exclusion
l Event ordering via sending and receiving of messages

u More portable to different environments, though lacks 
some of the convenience of a shared address space

u Typically, communication in consummated via a send 
and a matching receive
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Simple Send and Receive

u Send “data” specifies where the data are in sender’s address space
u Recv “data” specifies where the incoming message data should be 

put in receiver’s address space
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S

send(dest, data)

R

recv(src, data)

send( dest, data ), receive( src, data )

Simple API 

u Destination or source
l Direct address: 

node Id, process Id
l Indirect address:

mailbox, socket, 
channel, …

u Data
l Buffer (addr) and size
l Anything else that 

specifies the source 
data or destination data 
structure
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S

R
send(dest, data)

recv(src, data)

send( dest, data ), receive( src, data )

Simple Semantics

u Send call does not return until data have been copied 
out of source data structure
l Could be to destination process/machine, or to OS buffer, …  

(there are variants depending on this)
l Source data structure can be safely overwritten without 

changing the data carried by the message

u Receive does not return until data have been received 
and copied into destination data structure

u This is called Synchronous Message Passing
l Makes synchronization implicit and easy
l But processes wait around a lot, so can hurt performance

Issues/options

u Asynchronous vs. synchronous
u Buffering of messages
u Matching of messages
u Direct vs. indirect communication/specification
u Data alone, or function invocation?
u How to handle exceptions (when bad things happen)?
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Synchronous vs. Asynchronous Send

u Synchronous
l Will not return until data are 

copied out of source data
structure

l If a buffer is used for 
messaging and it is full, block

u Asynchronous
l Return before data are copied 

out of source data structure
l Completion

• Applications must check status
• Notify or signal the application

l Block on full buffer

send( dest, msg)

Msg transfer resource

status = async_send( dest, msg )
…
if !send_complete( status )

wait for completion;
…
use msg data structure;
…

Synchronous vs Asynchronous Receive

u Synchronous
l Return data if there is a 

message
l Block on empty buffer

u Asynchronous
l Return data if there is a 

message
l Return status if there is no 

message (probe)

recv( src, msg )

status = async_recv( src, msg );
if ( status == SUCCESS )

consume msg;

while ( probe(src) != HaveMSG )
wait for msg arrival

recv( src, msg );
consume msg;

Msg transfer resource

Buffering

u No buffering
l Sender must wait until the 

receiver receives message
l Rendezvous on each msg

u Finite buffer
l Sender blocks on buffer full

buffer

Synchronous send:
u Call send system call with M
u Send system call: 

l No buffer in kernel: block
l Copy M to kernel buffer

Synchronous recv:
u Call recv system call
u Recv system call:

l No M in kernel: block
l Copy to user buffer

How to manage kernel buffer?
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send(     )M

M

recv(     )M

Synchronous Send/Recv Within a System

On distributed machines/OSes, buffers at one/both ends
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What if Buffers Fill Up?

u Make processes wait (can be hard to do when they 
are on different machines)

u Drop messages

u Don’t send fast enough to fill up buffers: flow control

u Credits
l Receivers provide credits based on space availability
l Senders don’t send unless they have the credits to do so 
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Direct Addressing Example

u Does this work?
u Would it work with multiple producers and 1 consumer?
u Would it work with 1 producer and multiple consumers?
u What about multiple producers and multiple 

consumers?

Producer(){
...
while (1) {

produce item;
recv(Consumer, &credit);
send(Consumer, item);

}
}

Consumer(){
...
for (i=0; i<N; i++)

send(Producer, credit);
while (1) {

recv(Producer, &item);
send(Producer, credit);
consume item;

}
}
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Indirect Addressing Example

u Would it work with multiple producers and 1 consumer?
u Would it work with 1 producer and multiple consumers?
u What about multiple producers and multiple 

consumers?

Producer(){
...
while (1) {

produce item;
recv(prodMbox, &credit);
send(consMbox, item);

}
}

Consumer(){
...
for (i=0; i<N; i++)

send(prodMbox, credit);
while (1) {

recv(consMbox, &item);
send(prodMbox, credit);
consume item;

}
}

Indirect Communication

u Names
l mailbox, socket, channel, …

u Properties
l Some allow one-to-one 

(e.g. pipe)
l Some allow many-to-one or 

one-to-many communications 
(e.g. mailbox)
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mbox

pipe
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Mailbox Message Passing

u Message-oriented 1-way communication
u Data structure

l Mutex, condition variable, buffer for messages
u Operations

l Init, open, close, send, receive, …
u Does the sender know when receiver gets a message?
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mbox_send(M) mbox_recv(M)
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Example: Keyboard Input

u Interrupt handler
l Get the input characters and give to device thread

u Device thread
l Generate a message and send it to mailbox of an input process

getchar()

mbox
V(s);
…

while (1) {
P(s);
Acquire(m);
convert …
Release(m);

};

Interrupt
handler

Device
thread

Sockets
u Sockets

l Bidirectional (unlike mailbox)
l Unix domain sockets (IPC)
l Network sockets (over network)
l Same APIs

u Two types
l Datagram Socket (UDP)

• Collection of messages
• Best effort
• Connectionless

l Stream Socket (TCP)
• Stream of bytes (like pipe)
• Reliable
• Connection-oriented
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send
/recv

send/
recv

Kernel

socket

socket

Network Socket Address Binding

u A network socket binds to
u Host: IP address
u Protocol: UDP/TCP
u Port: 

u Well known ports (0..1023), 
e.g. port 80 for Web

u Unused ports available for 
clients (1025..65535)

u Why ports?
• Indirection: No need to know which 

process to communicate with
• Updating software on one side 

won’t affect another side
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ports

UDP/TCP protocols

128.112.9.1 address
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Communication with Stream Sockets
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Server Client
Create a socket

Bind to a port

Listen on the port

Receive request

Create a socket

Receive response

Connect to server Accept connection
Establish

connection

Send request
request

Send response
reply

…

Sockets API

u Create and close a socket
l sockid = socket(af, type, protocol);
l sockerr = close(sockid);

u Bind a socket to a local address
l sockerr = bind(sockid, localaddr, addrlength);

u Negotiate the connection
l listen(sockid, length);
l accept(sockid, addr, length);

u Connect a socket to destimation
l connect(sockid, destaddr, addrlength);

u Message passing
l send(sockid, buf, size, flags);
l recv(sockid, buf, size, flags);
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Unix pipes

u An output stream connected to an input stream by a 
chunk of memory (a queue of bytes).

u Send (called write) is non-blocking
u Receive (called read) is blocking

u Buffering is provided by OS
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What if things go bad?

u R waits for a message from S, 
but S has terminated
l R may be blocked forever

u S sends a message to R, 
but R has terminated
l S has no buffer and will be 

blocked forever

S R

S R
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Exception: Message Loss

u Use ack and timeout to detect 
and retransmit a lost message
l Receiver sends an ack for each msg
l Sender blocks until an ack message 

is back or timeout 
status = send( dest, msg, timeout );

l If timeout happens and no ack, then 
retransmit the message

u Issues
l Duplicates
l Losing ack messages

S R
send
ack
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Exception: Message Loss, contd.

u Retransmission must handle 
l Duplicate messages on receiver side
l Out-of-sequence ack messages on 

sender side
u Retransmission

l Use sequence number for each 
message to identify duplicates

l Remove duplicates on receiver side
l Sender retransmits on an out-of-

sequence ack
u Reduce ack messages

l Bundle ack messages
l Piggy-back acks in send messages

S R

send1

ack1

send2

ack2
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Exception: Message Corruption

u Detection
l Compute a checksum over the entire message and send 

the checksum (e.g. CRC code) as part of the message
l Recompute a checksum on receive and compare with the 

checksum in the message
u Correction

l Trigger retransmission
l Use correction codes to recover

Data CRC

Compute checksum
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Message Passing Interface (MPI)

u A message-passing library for parallel machines
l Implemented at user-level for high-performance computing
l Portable

u Basic (6 functions)
l Works for most parallel programs

u Large (125 functions)
l Blocking (or synchronous) message passing
l Non-blocking (or asynchronous) message passing
l Collective communication

u References
l http://www.mpi-forum.org/
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http://www.mpi-forum.org/


8

Remote Procedure Call (RPC)

u Make remote procedure calls
l Similar to local procedure calls
l Examples: SunRPC, Java RMI

u Restrictions
l Call by value
l Call by object reference (maintain consistency)
l Not call by reference

u Different from mailbox, socket or MPI
l Remote execution, not just data transfer

u References
l B. J. Nelson, Remote Procedure Call, PhD Dissertation, 1981
l A. D. Birrell and B. J. Nelson, Implementing Remote 

Procedure Calls, ACM Trans. on Computer Systems, 1984
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RPC Model
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Caller (Client) Server

RPC call Request message including arguments

Reply message

Including a return value

Return
(same as
local calls)

Function execution 
w/ passed arguments

Compile time type checking and interface generation 

RPC Mechanism
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Return ReturnCall

RPCIdClientId Call Args

Call

Encode/
marshall

Send Receive

Decode
unmarshall

Encode/
marshall

Send

Reply Results

Receive

Decode
unmarshall

Client program Server program

Client
stub

RPC
runtime

RPC
runtime

Server
stub
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Summary

u Message passing
l Move data between processes
l Implicit synchronization
l Many API design alternatives (Socket, MPI)
l Indirection is helpful

u Implementation and Semantics
l Synchronous method is most common
l Asynchronous method provides overlapping, but required 

careful design and implementation decisions
l Indirection makes implementation flexible
l Exception needs to be carefully handled

u RPC 
l Remote execution like local procedure calls
l With constraints in terms of passing data
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Appendix: 
Message Passing Interface (MPI)
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Hello World using MPI
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#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )
{

int rank, size;
MPI_Init( &argc, &argv );
MPI_Comm_rank( MPI_COMM_WORLD, &rank );
MPI_Comm_size( MPI_COMM_WORLD, &size );
printf( "I am %d of %d\n", rank, size );
MPI_Finalize();
return 0;

}

Initialize MPI 
environment

Last call to
clean up

Return
my rank

Return # of
processes  

Blocking Send

u MPI_Send(buf, count, datatype, dest, tag, comm)
l buf address of send buffer
l count # of elements in buffer
l datatype data type of each send buffer element
l dest rank of destination
l tag message tag
l comm communicator 

u This routine may block until the message is received by 
the destination process
l Depending on implementation
l But will block until the user source buffer is reusable

u More about message tag later
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Blocking Receive

u MPI_Recv(buf, count, datatype, source, tag, comm, 
status)
l buf address of receive buffer (output)
l count maximum # of elements in receive buffer 
l datatype datatype of each receive buffer element
l source rank of source
l tag message tag 
l comm communicator
l status status object (output)

u Receive a message with the specified tag from the 
specified comm and specified source process

u MPI_Get_count(status, datatype, count) returns the real 
count of the received data

36
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More on Send & Recv

u Can send from source to destination directly
u Message passing must match

l Source rank (can be MPI_ANY_SOURCE)
l Tag (can be MPI_ANY_TAG)
l Comm (can be MPI_COMM_WORLD)
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Tag = 0

Tag = 1

Tag = …

MPI_Send(…, 
dest=1, tag=1, comm=X…)

MPI_Recv( …, 
Source=0,tag=1,comm=X…)

Comm = X

Buffered Send
u MPI_Bsend(buf, count, datatype, dest, tag, 

comm)
l buf address of send buffer
l count # of elements in buffer
l Datatype type of each send element
l dest rank of destination
l tag message tag
l comm communicator 

u May buffer; user can use the user send 
buffer right away

u MPI_Buffer_attach(),  MPI_Buffer_detach 
creates and destroy the buffer

u MPI_Ssend: Returns only when matching 
receive posted. No buffer needed.

u MPI_Rsend: assumes received posted 
already (programmer’s responsibility)
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MPI_Bsend(buf, …)

Buffer
Created by
MPI_Buffer_attach()

Non-Blocking Send

u MPI_Isend(buf, count, datatype, 
dest, tag, comm, *request)
l request is a handle, used by other 

calls below

u Return as soon as possible
l Unsafe to use buf right away

u MPI_Wait(*request, *status)
l Block until send is done

u MPI_Test(*request, 
*flag,*status)
l Return the status without blocking
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MPI_Isend(…)

Work to do

MPI_Wait(…)

MPI_Isend(…)

Work to do

MPI_Test(…, flag,…);
while ( flag == FALSE) {

} 

More work

Non-Blocking Recv

u MPI_Irecv(buf, count, datatype, 
dest, tag, comm, *request, ierr)

u Return right away
u MPI_Wait()

l Block until finishing receive

u MPI_Test()
l Return status

u MPI_Probe(source, tag, comm, 
flag, status, ierror)
l Is there a matching message?
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MPI_Irecv(…)

Work to do

MPI_Wait(…)

MPI_Probe(…)
while ( flag == FALSE) {

}
MPI_Irecv(…) 
or MPI_recv(…) 

More work


