COS 318: Operating Systems

00
Message Passing

(http://www.cs.princeton.edu/courses/cos318/)

With No Shared Address Space
® 09
+ No need for explicit mutual exclusion primitives

e Processes cannot touch the same data directly

+ Communicate by sending and receiving explicit
messages: Message Passing

+ Synchronization is implicit in message passing
e No need for explicit mutual exclusion
e Event ordering via sending and receiving of messages

+ More portable to different environments, though lacks
some of the convenience of a shared address space

+ Typically, communication in consummated via a send

Motivation
o060
+ Locks, semaphores, monitors are good but they only
work under the shared-address-space model
e Threads in the same process
o Processes that share an address space

¢ We have assumed that processes/threads communicate
via shared data (counter, producer-consumer buffer, ...)

+ How to synchronize and communicate among
processes with different address spaces?
e Inter-process communication (IPC)

+ Can we have a single set of primitives that work for all
cases: single machine OS, multiple machines same OS,
multiple machines multiple OS, distributed?

» &2
g e

Sending A Message

o060
Within A Computer Across A Network
P1 P2 |

Send@ Recv() Send()~ Recv()

: \ Network -

\—Y—/
OS Kernel 0s oS
C0OS461

P1 can send to P2, P2 can send to P1

and a matching receive
%,

R ;

Simple Send and Receive
N

send(dest, data), receive(src, data)

S

R

send(dest, data)\
r recv(src, data)

¢ Send “data” specifies where the data are in sender’s address space

¢ Recv “data” specifies where the incoming message data should be
put in receiver’'s address space

Simple Semantics
KN

+ Send call does not return until data have been copied
out of source data structure
e Could be to destination process/machine, or to OS buffer, ...
(there are variants depending on this)
e Source data structure can be safely overwritten without
changing the data carried by the message

¢ Receive does not return until data have been received
and copied into destination data structure

¢ This is called Synchronous Message Passing
e Makes synchronization implicit and easy
e But processes wait around a lot, so can hurt performance

Simple API
KN

send(dest, data), receive(src, data)

S
+ Destination or source
e Direct address:
node Id, process Id
e Indirect address: send(dest, data)
mailbox, socket, R
channel, ...
¢ Data
e Buffer (addr) and size
e Anything else that
specifies the source
data or destination data

* recv(src, data)

structure
A °

Issues/options
o046

+ Asynchronous vs. synchronous

+ Buffering of messages

+ Matching of messages

+ Direct vs. indirect communication/specification

+ Data alone, or function invocation?

+ How to handle exceptions (when bad things happen)?

Synchronous vs. Asynchronous Send

¢ Synchronous

o Will not return until data are
copied out of source data
structure

e If a buffer is used for
messaging and it is full, block

¢ Asynchronous

e Return before data are copied
out of source data structure

e Completion

* Applications must check status
* Notify or signal the application
e Block on full buffer

i

send(dest, msg

status = async_send(dest, msg)

|f '!send_complete(status)
wait for completion;

use msg data structure;

Buffering

+ No buffering

e Sender must wait until the
receiver receives message

e Rendezvous on each msg

¢ Finite buffer
e Sender blocks on buffer full

Synchronous vs Asynchronous Receive

®

)

¢ Synchronous

+ Asynchronous

o 09
recv(src, msg)

status = async_recv(src, msg);
if (status == SUCCESS)
consume msg;

e Return data if there is a
message

e Block on empty buffer

e Return data if there is a
message

e Return status if there is no
message (probe)

while (probe(src) |= HaveMSG)
wait for msg arrival

recv(src, msg);

consume msg;

Synchronous Send/Recv Within a System

906
Synchronous send:

¢ Call send system call with M
¢ Send system call:

e No buffer in kernel: block

e Copy M to kernel buffer
Synchronous recv:
¢ Call recv system call
¢ Recv system call:

e No M in kernel: block

e Copy to user buffer
How to manage kernel buffer?

On distributed machines/OSes, buffers at one/both ends
12

What if Buffers Fill Up?
N

¢ Make processes wait (can be hard to do when they
are on different machines)

¢ Drop messages
¢ Don’t send fast enough to fill up buffers: flow control

¢ Credits
e Receivers provide credits based on space availability
e Senders don’t send unless they have the credits to do so

Indirect Addressing Example

® 09
Producer () { Consumer () {
while (1) { for (i=0; i<N; i++)
produce item; send (prodMbox, credit);
recv (prodMbox, &credit); while (1) {
send (consMbox, item) ; recv (consMbox, &item) ;
} send (prodMbox, credit) ;
} consume item;
}
}

+ Would it work with multiple producers and 1 consumer?
+ Would it work with 1 producer and multiple consumers?

+ What about multiple producers and multiple
consumers?

Direct Addressing Example

Producer () { Consumer () {
while (1) { for (i=0; i<N; i++)
produce item; send (Producer, credit);

recv (Consumer, &credit); < | while (1) {
send (Consumer, item); \\\. recv (Producer, &item);
} \ send (Producer, credit);
} consume item;
}
}

+ Does this work?

+ Would it work with multiple producers and 1 consumer?
¢ Would it work with 1 producer and multiple consumers?
+ What about multiple producers and multiple

14

consumers?

Indirect Communication
o0¢
¢ Names
e mailbox, socket, channel, ...
o Properties
e Some allow one-to-one mbox
(e.g. pipe)
e Some allow many-to-one or
one-to-many communications
(e.g. mailbox)

pipe

16

Mailbox Message Passing

® 09
¢ Message-oriented 1-way communication

+ Data structure
e Mutex, condition variable, buffer for messages
¢ Operations
e Init, open, close, send, receive, ...
+ Does the sender know when receiver gets a message?

mbox_send(M) ——— mbox_recv(M)

Sockets

o 09
¢ Sockets

Bidirectional (unlike mailbox) send <_socket | send/

Unix domain sockets (IPC) Irecy CCY

Network sockets (over network)
Same APIs
¢ Two types

e Datagram Socket (UDP)
+ Collection of messages L socket

* Best effort
» Connectionless
e Stream Socket (TCP)
+ Stream of bytes (like pipe)

* Reliable
» Connection-oriented

Example: Keyboard Input

o060
¢ Interrupt handler

e Get the input characters and give to device thread

+ Device thread
e Generate a message and send it to mailbox of an input process

while (1) {
P(s);

Vis): Acquire (m) ;
’ —> convert .. m—'getchar()
Release (m) ;

Vi mbox

Interrupt Device
handler thread

1
kS s
§

o

Network Socket Address Binding
06
¢ A network socket binds to

+ Host: IP address
+ Protocol: UDP/TCP
+ Port: ports
+ Well known ports (0..1023),
e.g. port 80 for Web UDP/TCP || protocols
+ Unused ports available for ’W‘ address

clients (1025..65535)
¢ Why ports?
* Indirection: No need to know which

process to communicate with
» Updating software on one side
won't affect another side

®@ 20

)

Communication with Stream Sockets Sockets API
® 09 o 09
Client Server ¢ Create and close a socket
e sockid = socket(af, type, protocol);
reate a socke e sockerr = close(sockid);
Bind to a port + Bind a socket to a local address
@ e sockerr = bind(sockid, localaddr, addrlength);
»Listen on the port + Negotiate the connection
. e listen(sockid, length);
‘Connect to server <~—gonnection |AcCept connection ‘ e accept(sockid, addr, length);
request - + Connect a socket to destimation
Send request Receive request
| e connect(sockid, destaddr, addrlength);
‘ Receive response ‘ repy + Message passing
e send(sockid, buf, size, flags);
@ @ e recv(sockid, buf, size, flags);
s - i ”
Unix pipes What if things go bad?
® 09 o 0 9q
¢ An output stream connected to an input stream by a + R waits for a message from S,
chunk of memory (a queue of bytes). but S has terminated
e R may be blocked forever
¢ Send (called write) is non-blocking 4-
¢ Receive (called read) is blocking
¢ S sends a message to R,
. . but R has terminated
* BUﬁerlng IS prowded by 0s e S has no buffer and will be s
blocked forever
- £ 24
kot ot

Exception: Message Loss Exception: Message Loss, contd.

® 09 o060
+ Use ack and timeout to detect + Retransmission must handle
and retransmit a lost message e Duplicate messages on receiver side
e Receiver sends an ack for each msg e Out-of-sequence ack messages on
e Sender blocks until an ack message send sender S_'de_ sends
is back or timeout s ack + Retransmission
status = send(dest, msg, timeout); e Use sequence number for each ackq
e |f timeout happens and no ack, then r;essagedto |ﬁentt|fy dupllcat.es id S sendz R
retransmit the message e Remove duplica gs on receiver side acks
e Sender retransmits on an out-of-
Issues

sequence ack

+ Reduce ack messages
e Bundle ack messages
e Piggy-back acks in send messages

R 2 R, 2

e Duplicates
e Losing ack messages

Exception: Message Corruption Message Passing Interface (MPI)
® 09 o 0 9q
¢ A message-passing library for parallel machines
‘ Data ‘CRC‘ e Implemented at user-level for high-performance computing
e Portable
Compute checksum + Basic (6 functions)

¢ Detection e Works for most parallel programs

e Compute a checksum over the entire message and send + Large (125 functions)

the checksum (e.g. CRC code) as part of the message e Blocking (or synchronous) message passing
e Recompute a checksum on receive and compare with the e Non-blocking (or asynchronous) message passing

checksum in the message
+ Correction

e Trigger retransmission

e Collective communication
+ References

e http://www.mpi-forum.org/

e Use correction codes to recover

& 27

%

28

i)
g‘;@

http://www.mpi-forum.org/

Remote Procedure Call (RPC)

+ Make remote procedure calls
e Similar to local procedure calls
e Examples: SunRPC, Java RMI
+ Restrictions
e Call by value
e Call by object reference (maintain consistency)
e Not call by reference
+ Different from mailbox, socket or MPI
e Remote execution, not just data transfer
+ References
e B. J. Nelson, Remote Procedure Call, PhD Dissertation, 1981

e A.D. Birrell and B. J. Nelson, Implementing Remote
Procedure Calls, ACM Trans. on Computer Systems, 1984

RPC Mechanism

Client program Server program

‘ Return ‘ Call ‘

‘ Call ‘ Return ‘
[L]
| Client | Decode | Encode/ | ! { Server | Decode | Encode/
{ stub \unmarshall| marshall i stub |unmarshall| marshall
. [| . [T
. I | . . I I
RPC ' - 3 'RPC ' . I
runtime ‘ Rec:lve ‘ Selnd ‘ runtime ‘ 2R ‘ Se;nd ‘

\>{ Clientld‘ RPCId ‘ Call ‘ Args I/

31

RPC Model
o060
Caller (Client) Server
RPC call equest messagq
ol
%
Function execution
/ passed arguments
|y message w
'I?necﬁu{jing a return value
Return
(same as
local calls)

Compile time type checking and interface generation

?3@1&7 30

Summary

o040

¢ Message passing

e Move data between processes

e Implicit synchronization

e Many API design alternatives (Socket, MPI)

e Indirection is helpful
+ Implementation and Semantics

e Synchronous method is most common

e Asynchronous method provides overlapping, but required
careful design and implementation decisions

e Indirection makes implementation flexible
e Exception needs to be carefully handled

¢ RPC

o Remote execution like local procedure calls

)

@ e With constraints in terms of passing data -

Appendix:
Message Passing Interface (MPI)

;@g 33

Blocking Send
o0
+ MPI_Send(buf, count, datatype, dest, tag, comm)
buf address of send buffer
count # of elements in buffer
datatype data type of each send buffer element
dest rank of destination
tag message tag
comm communicator
+ This routine may block until the message is received by
the destination process
e Depending on implementation
e But will block until the user source buffer is reusable

+ More about message tag later

35

Hello World using MPI
N

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])

t _ Initialize MP{ Return
int rank, size; environmep’”. my rank
MPI Init(&argc, &argv); y

MPI_Comm_rank(MPI_COMM WORLD, &rafk);
MPI Comm_size(MPI_COMM WORLD, &size);
printf("I am %d of %d\n", rank, s\ze);

MPI Finalize();
return 0; Last call to
} clean up

Return # of
processes

34

ks

o

Blocking Receive
o040

+ MPI_Recv(buf, count, datatype, source, tag, comm,

status)
e buf address of receive buffer (output)

count maximum # of elements in receive buffer

datatype datatype of each receive buffer element

source rank of source

tag message tag

comm communicator

e status status object (output)
¢ Receive a message with the specified tag from the
specified comm and specified source process

¢ MPI_Get_count(status, datatype, count) returns the real
count of the received data

= .

)

More on Send & Recv
o0 ¢

Comm = X

MPI_Send(..., @
dest=1, tag=1, comm=X...) \@
\ MPI_Recv(...,

(

Tag = ... Source=0,tag=1,comm=X...)

+ Can send from source to destination directly
+ Message passing must match

e Source rank (can be MPI_ANY_SOURCE)
e Tag (can be MPI_ANY_TAG)

Buffered Send

comm)
o buf address of send buffer
e count # of elements in buffer
o Datatype type of each send element
o dest rank of destination
e tag message tag
e comm communicator

buffer right away

creates and destroy the buffer

¢ MPI_Bsend(buf, count, datatype, dest, tag,

¢ May buffer; user can use the user send

¢ MPI_Buffer_attach(), MPI_Buffer_detach

MPI_Bsend(buf, ...)

Created by
MPI_Buffer_attach()

e Comm (can be MPI_COMM_WORLD)

¢ MPI_Ssend: Returns only when matching
receive posted. No buffer needed.

¢ MPI_Rsend: assumes received posted

R 7

Non-Blocking Send

06
¢ MPI_Isend(buf, count, datatype,

dest, tag, comm, *request) MPI_lIsend(...)

e request is a handle, used by other Work to do
calls below

+ Return as soon as possible MPI_Wait(....)
e Unsafe to use buf right away
+ MPI_Wait(*request, *status) MPI_lsend(...)

e Block until send is done

Work
¢ MPI_Test(*request,

*flag,*status) MPI_Test(..., flag,...);
e Return the status without blocking ~ While (flag == FALSE) {

More work

}
& 39

@ already (programmer’s responsibility)
5

38

Non-Blocking Recv

¢ MPI_Irecv(buf, count, datatype,

¢ MPI_Probe(source, tag, comm,
flag, status, ierror)
e |s there a matching message?

dest, tag, comm, *request, ierr) MPIIrecv(...)
+ Return right away
¢ MPLWait) , MPI_Wait(....)

e Block until finishing receive
+ MPI_Test()

e Return status MPI_Probe...)

while (flag == FALSE) {
More work

}
MPI_Irecv(...)
or MPI_recv(...)

40

10

