
1

COS 318: Operating Systems

Message Passing

(http://www.cs.princeton.edu/courses/cos318/)

Motivation

u Locks, semaphores, monitors are good but they only
work under the shared-address-space model
l Threads in the same process
l Processes that share an address space

u We have assumed that processes/threads communicate
via shared data (counter, producer-consumer buffer, …)

u How to synchronize and communicate among
processes with different address spaces?
l Inter-process communication (IPC)

u Can we have a single set of primitives that work for all
cases: single machine OS, multiple machines same OS,
multiple machines multiple OS, distributed?

With No Shared Address Space

u No need for explicit mutual exclusion primitives
l Processes cannot touch the same data directly

u Communicate by sending and receiving explicit
messages: Message Passing

u Synchronization is implicit in message passing
l No need for explicit mutual exclusion
l Event ordering via sending and receiving of messages

u More portable to different environments, though lacks
some of the convenience of a shared address space

u Typically, communication in consummated via a send
and a matching receive

4

Sending A Message

Network
Send()

OS

Recv()

OS

Across A Network

COS461

Send() Recv()

OS Kernel

Within A Computer

P1 P2

P1 can send to P2, P2 can send to P1

2

Simple Send and Receive

u Send “data” specifies where the data are in sender’s address space
u Recv “data” specifies where the incoming message data should be

put in receiver’s address space

5

S

send(dest, data)

R

recv(src, data)

send(dest, data), receive(src, data)

Simple API

u Destination or source
l Direct address:

node Id, process Id
l Indirect address:

mailbox, socket,
channel, …

u Data
l Buffer (addr) and size
l Anything else that

specifies the source
data or destination data
structure

6

S

R
send(dest, data)

recv(src, data)

send(dest, data), receive(src, data)

Simple Semantics

u Send call does not return until data have been copied
out of source data structure
l Could be to destination process/machine, or to OS buffer, …

(there are variants depending on this)
l Source data structure can be safely overwritten without

changing the data carried by the message

u Receive does not return until data have been received
and copied into destination data structure

u This is called Synchronous Message Passing
l Makes synchronization implicit and easy
l But processes wait around a lot, so can hurt performance

Issues/options

u Asynchronous vs. synchronous
u Buffering of messages
u Matching of messages
u Direct vs. indirect communication/specification
u Data alone, or function invocation?
u How to handle exceptions (when bad things happen)?

3

Synchronous vs. Asynchronous Send

u Synchronous
l Will not return until data are

copied out of source data
structure

l If a buffer is used for
messaging and it is full, block

u Asynchronous
l Return before data are copied

out of source data structure
l Completion

• Applications must check status
• Notify or signal the application

l Block on full buffer

send(dest, msg)

Msg transfer resource

status = async_send(dest, msg)
…
if !send_complete(status)

wait for completion;
…
use msg data structure;
…

Synchronous vs Asynchronous Receive

u Synchronous
l Return data if there is a

message
l Block on empty buffer

u Asynchronous
l Return data if there is a

message
l Return status if there is no

message (probe)

recv(src, msg)

status = async_recv(src, msg);
if (status == SUCCESS)

consume msg;

while (probe(src) != HaveMSG)
wait for msg arrival

recv(src, msg);
consume msg;

Msg transfer resource

Buffering

u No buffering
l Sender must wait until the

receiver receives message
l Rendezvous on each msg

u Finite buffer
l Sender blocks on buffer full

buffer

Synchronous send:
u Call send system call with M
u Send system call:

l No buffer in kernel: block
l Copy M to kernel buffer

Synchronous recv:
u Call recv system call
u Recv system call:

l No M in kernel: block
l Copy to user buffer

How to manage kernel buffer?

12

send()M

M

recv()M

Synchronous Send/Recv Within a System

On distributed machines/OSes, buffers at one/both ends

4

What if Buffers Fill Up?

u Make processes wait (can be hard to do when they
are on different machines)

u Drop messages

u Don’t send fast enough to fill up buffers: flow control

u Credits
l Receivers provide credits based on space availability
l Senders don’t send unless they have the credits to do so

14

Direct Addressing Example

u Does this work?
u Would it work with multiple producers and 1 consumer?
u Would it work with 1 producer and multiple consumers?
u What about multiple producers and multiple

consumers?

Producer(){
...
while (1) {

produce item;
recv(Consumer, &credit);
send(Consumer, item);

}
}

Consumer(){
...
for (i=0; i<N; i++)

send(Producer, credit);
while (1) {

recv(Producer, &item);
send(Producer, credit);
consume item;

}
}

15

Indirect Addressing Example

u Would it work with multiple producers and 1 consumer?
u Would it work with 1 producer and multiple consumers?
u What about multiple producers and multiple

consumers?

Producer(){
...
while (1) {

produce item;
recv(prodMbox, &credit);
send(consMbox, item);

}
}

Consumer(){
...
for (i=0; i<N; i++)

send(prodMbox, credit);
while (1) {

recv(consMbox, &item);
send(prodMbox, credit);
consume item;

}
}

Indirect Communication

u Names
l mailbox, socket, channel, …

u Properties
l Some allow one-to-one

(e.g. pipe)
l Some allow many-to-one or

one-to-many communications
(e.g. mailbox)

16

mbox

pipe

5

Mailbox Message Passing

u Message-oriented 1-way communication
u Data structure

l Mutex, condition variable, buffer for messages
u Operations

l Init, open, close, send, receive, …
u Does the sender know when receiver gets a message?

17

mbox_send(M) mbox_recv(M)

18

Example: Keyboard Input

u Interrupt handler
l Get the input characters and give to device thread

u Device thread
l Generate a message and send it to mailbox of an input process

getchar()

mbox
V(s);
…

while (1) {
P(s);
Acquire(m);
convert …
Release(m);

};

Interrupt
handler

Device
thread

Sockets
u Sockets

l Bidirectional (unlike mailbox)
l Unix domain sockets (IPC)
l Network sockets (over network)
l Same APIs

u Two types
l Datagram Socket (UDP)

• Collection of messages
• Best effort
• Connectionless

l Stream Socket (TCP)
• Stream of bytes (like pipe)
• Reliable
• Connection-oriented

19

send
/recv

send/
recv

Kernel

socket

socket

Network Socket Address Binding

u A network socket binds to
u Host: IP address
u Protocol: UDP/TCP
u Port:

u Well known ports (0..1023),
e.g. port 80 for Web

u Unused ports available for
clients (1025..65535)

u Why ports?
• Indirection: No need to know which

process to communicate with
• Updating software on one side

won’t affect another side

20

ports

UDP/TCP protocols

128.112.9.1 address

6

Communication with Stream Sockets

21

Server Client
Create a socket

Bind to a port

Listen on the port

Receive request

Create a socket

Receive response

Connect to server Accept connection
Establish

connection

Send request
request

Send response
reply

…

Sockets API

u Create and close a socket
l sockid = socket(af, type, protocol);
l sockerr = close(sockid);

u Bind a socket to a local address
l sockerr = bind(sockid, localaddr, addrlength);

u Negotiate the connection
l listen(sockid, length);
l accept(sockid, addr, length);

u Connect a socket to destimation
l connect(sockid, destaddr, addrlength);

u Message passing
l send(sockid, buf, size, flags);
l recv(sockid, buf, size, flags);

22

Unix pipes

u An output stream connected to an input stream by a
chunk of memory (a queue of bytes).

u Send (called write) is non-blocking
u Receive (called read) is blocking

u Buffering is provided by OS

24

What if things go bad?

u R waits for a message from S,
but S has terminated
l R may be blocked forever

u S sends a message to R,
but R has terminated
l S has no buffer and will be

blocked forever

S R

S R

7

25

Exception: Message Loss

u Use ack and timeout to detect
and retransmit a lost message
l Receiver sends an ack for each msg
l Sender blocks until an ack message

is back or timeout
status = send(dest, msg, timeout);

l If timeout happens and no ack, then
retransmit the message

u Issues
l Duplicates
l Losing ack messages

S R
send
ack

26

Exception: Message Loss, contd.

u Retransmission must handle
l Duplicate messages on receiver side
l Out-of-sequence ack messages on

sender side
u Retransmission

l Use sequence number for each
message to identify duplicates

l Remove duplicates on receiver side
l Sender retransmits on an out-of-

sequence ack
u Reduce ack messages

l Bundle ack messages
l Piggy-back acks in send messages

S R

send1

ack1

send2

ack2

27

Exception: Message Corruption

u Detection
l Compute a checksum over the entire message and send

the checksum (e.g. CRC code) as part of the message
l Recompute a checksum on receive and compare with the

checksum in the message
u Correction

l Trigger retransmission
l Use correction codes to recover

Data CRC

Compute checksum

x

Message Passing Interface (MPI)

u A message-passing library for parallel machines
l Implemented at user-level for high-performance computing
l Portable

u Basic (6 functions)
l Works for most parallel programs

u Large (125 functions)
l Blocking (or synchronous) message passing
l Non-blocking (or asynchronous) message passing
l Collective communication

u References
l http://www.mpi-forum.org/

28

http://www.mpi-forum.org/

8

Remote Procedure Call (RPC)

u Make remote procedure calls
l Similar to local procedure calls
l Examples: SunRPC, Java RMI

u Restrictions
l Call by value
l Call by object reference (maintain consistency)
l Not call by reference

u Different from mailbox, socket or MPI
l Remote execution, not just data transfer

u References
l B. J. Nelson, Remote Procedure Call, PhD Dissertation, 1981
l A. D. Birrell and B. J. Nelson, Implementing Remote

Procedure Calls, ACM Trans. on Computer Systems, 1984

29

RPC Model

30

Caller (Client) Server

RPC call Request message including arguments

Reply message

Including a return value

Return
(same as
local calls)

Function execution
w/ passed arguments

Compile time type checking and interface generation

RPC Mechanism

31

Return ReturnCall

RPCIdClientId Call Args

Call

Encode/
marshall

Send Receive

Decode
unmarshall

Encode/
marshall

Send

Reply Results

Receive

Decode
unmarshall

Client program Server program

Client
stub

RPC
runtime

RPC
runtime

Server
stub

32

Summary

u Message passing
l Move data between processes
l Implicit synchronization
l Many API design alternatives (Socket, MPI)
l Indirection is helpful

u Implementation and Semantics
l Synchronous method is most common
l Asynchronous method provides overlapping, but required

careful design and implementation decisions
l Indirection makes implementation flexible
l Exception needs to be carefully handled

u RPC
l Remote execution like local procedure calls
l With constraints in terms of passing data

9

Appendix:
Message Passing Interface (MPI)

33

Hello World using MPI

34

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{

int rank, size;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
printf("I am %d of %d\n", rank, size);
MPI_Finalize();
return 0;

}

Initialize MPI
environment

Last call to
clean up

Return
my rank

Return # of
processes

Blocking Send

u MPI_Send(buf, count, datatype, dest, tag, comm)
l buf address of send buffer
l count # of elements in buffer
l datatype data type of each send buffer element
l dest rank of destination
l tag message tag
l comm communicator

u This routine may block until the message is received by
the destination process
l Depending on implementation
l But will block until the user source buffer is reusable

u More about message tag later

35

Blocking Receive

u MPI_Recv(buf, count, datatype, source, tag, comm,
status)
l buf address of receive buffer (output)
l count maximum # of elements in receive buffer
l datatype datatype of each receive buffer element
l source rank of source
l tag message tag
l comm communicator
l status status object (output)

u Receive a message with the specified tag from the
specified comm and specified source process

u MPI_Get_count(status, datatype, count) returns the real
count of the received data

36

10

More on Send & Recv

u Can send from source to destination directly
u Message passing must match

l Source rank (can be MPI_ANY_SOURCE)
l Tag (can be MPI_ANY_TAG)
l Comm (can be MPI_COMM_WORLD)

37

Tag = 0

Tag = 1

Tag = …

MPI_Send(…,
dest=1, tag=1, comm=X…)

MPI_Recv(…,
Source=0,tag=1,comm=X…)

Comm = X

Buffered Send
u MPI_Bsend(buf, count, datatype, dest, tag,

comm)
l buf address of send buffer
l count # of elements in buffer
l Datatype type of each send element
l dest rank of destination
l tag message tag
l comm communicator

u May buffer; user can use the user send
buffer right away

u MPI_Buffer_attach(), MPI_Buffer_detach
creates and destroy the buffer

u MPI_Ssend: Returns only when matching
receive posted. No buffer needed.

u MPI_Rsend: assumes received posted
already (programmer’s responsibility)

38

MPI_Bsend(buf, …)

Buffer
Created by
MPI_Buffer_attach()

Non-Blocking Send

u MPI_Isend(buf, count, datatype,
dest, tag, comm, *request)
l request is a handle, used by other

calls below

u Return as soon as possible
l Unsafe to use buf right away

u MPI_Wait(*request, *status)
l Block until send is done

u MPI_Test(*request,
*flag,*status)
l Return the status without blocking

39

MPI_Isend(…)

Work to do

MPI_Wait(…)

MPI_Isend(…)

Work to do

MPI_Test(…, flag,…);
while (flag == FALSE) {

}

More work

Non-Blocking Recv

u MPI_Irecv(buf, count, datatype,
dest, tag, comm, *request, ierr)

u Return right away
u MPI_Wait()

l Block until finishing receive

u MPI_Test()
l Return status

u MPI_Probe(source, tag, comm,
flag, status, ierror)
l Is there a matching message?

40

MPI_Irecv(…)

Work to do

MPI_Wait(…)

MPI_Probe(…)
while (flag == FALSE) {

}
MPI_Irecv(…)
or MPI_recv(…)

More work

