COS 318: Operating Systems
Introduction

Jaswinder Pal Singh and a Fabulous Course Staff
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall19/cos318/

e

Information and Staff

¢ Website
o http://www.cs.princeton.edu/courses/archive/fall19/cos318/

¢ Textbooks
e Modern Operating Systems, 4" Edition, Tanenbaum and Bos

¢ Instructors
e Jaswinder Pal Singh, Office: 423 CS, Hours: Mon 1:30 — 3 pm

¢ Teaching assistants (offices and hours to be posted on web site)

e Samuel Ginzburg (ginzburg@p)
e James Heppenstall (jwmh@p)

e Haochen Li (haochenl@p)
e Ziyang Xu (ziyangx@cs.p)

¢ Undergraduate Assistants (to be finalized)

9/11/19

Today

+ Course information and logistics
¢ What is an operating system?
+ Evolution of operating systems

¢ Why study operating systems?

Grading
+ Projects 70%
+ Exam 20%

¢ Class Participation 10%

¢ Exam will be in-class, likely sometime after midterm
week (watch for announcements)

http://www.cs.princeton.edu/courses/archive/fall19/cos318/

Projects

¢ Build a small but real OS kernel, bootable on real PCs

+ Alot of hacking (in C & x86 assembly) but very rewarding

+ Projects
e Bootloader (150-300 lines)
o Non-preemptive kernel (200-250 lines)
o Preemptive kernel (100-150 lines)
e Inter-process communication and device driver (300-350 lines)
e Virtual memory (300-450 lines)

e File system (500+ lines)

e

Projects

+ How
e Pair with a partner for project 1, 2 and 3
e Pair with a different partner for project 4 and 5
e Do the final project yourself (no partners)
e Design review at the end of week one
e All projects due Sundays at 11:55 pm

+ Where to do the projects
o Develop on courselab machines, via remote login

e Instructions on how to develop and submit will be on the assignment web
pages

Project Grading

+ Design Review
e Requirements will be specified for each project
e Sign up online for making appointments for design review etc
e 0-5 points for each design review
e 10% deduction for missing an appointment
+ Project completion
e Assigned project points plus possible extra points
+ Late policy for grading projects
e 1 hour: 98.6%, 6 hours: 92%, 1 day: 71.7%
e 3 days: 36.8%, 7 days: 9.7%

Logistics

¢ Precepts
e Two precept sessions: attend one
* Mon 7:30pm — 8:20pm in CS 104
* Tue 7:30pm — 8:20pm in CS 105

+ For project 1
e Tutorial on assembly programming and kernel debugging
* Mon 9/16 and Tue 9/17: 7:30-8:20pm in CS 105
e Precept
* Mon 9/23 and Tue 9/24: 7:30-8:20pm in CS 105
e Design review

* 9/23 (Monday) 1:30pm — evening (Friend 010, unless changed)
+ Sign up online (1 slot per team)

e Due: 9/29 (Sunday) 11:55pm

9/11/19

Use Piazza for Discussions

+ Piazza is convenient
e Most of you love it (?)

+ Search, ask and answer questions
e Students are encouraged to answer questions on Piazza
e Staff will try to answer in a timely manner

+ Only use email if your question is personal/private

e For questions about your specific project grade: send email to
the TA in charge

e

Ethics and Other Issues

¢ Honor System
e Ask teaching staff if you are not sure
e Asking each other questions is okay: best place is on Piazza
e Work must be your own (or your team'’s)

¢ If you discover any solutions online, tell staff right away

+ Do not put your code or design on the web, in social media,
or anywhere public or available to others ...

¢ Most important thing to do in this course:

9

COS318 in Systems Course Sequence

+ Prerequisites
e COS 217: Introduction to Programming Systems
e COS 226: Algorithms and Data Structures
¢ 300-400 courses in systems
e COS318: Operating Systems
e COS320: Compiler Techniques
e COS333: Advanced Programming Techniques
e COS432: Information Security
e COS475: Computer Architecture
+ Courses requiring or recommending COS318 as prerequisite
COS 418: Distributed Systems
COS 461: Computer Networks
COS 518: Advanced Operating Systems
COS 561: Advanced Computer Networks

Do not violate the Honor Code

Today

+ Course information and logistics
¢ What is an operating system?
+ Evolution of operating systems

¢ Why study operating systems?

9/11/19

What Is Operating System?

gcc Browser DVD Player

Operating System

Hardware
=/

+ Software between applications and hardware
+ Provide abstractions to layers above
+ Implement abstractions for and manage resources below

]

In a Little More Depth: The Software

2,

User-mode

System System System
Library Library Library

Kernel-user Interface

Kernel-mode (Abstract virtual machine)

File System Virtual Memory

TCP/IP Networking] [Scheduling j

Hardware Abstraction Layer

)

Hardware-Specific Software
and Device Drivers

C Processors j [Address Translationj

Hardware

Disk

What Does an Operating System Do?

+ Provides abstractions to user-level software above

+ Implements the abstractions: manage resources

of
ey

What Does an Operating System Do?

+ Provides abstractions to user-level software above
e User programs can deal with simpler, high-level concepts
« E.g. files instead of disk blocks, virtual memory instead of physical, etc.
e Hide complex and unreliable hardware, and variety of hardware
e Provide illusions like “sole application running” or “infinite memory”
e For each area, can ask: what is the HW interface, what is the nicer
interface the OS provides, what is the even nicer one the library provides?

+ Implements the abstractions: manage resources

%& 16

9/11/19

What Does an Operating System Do?

+ Provides abstractions to user-level software above
e User programs can deal with simpler, high-level concepts
« E.g. files instead of disk blocks, virtual memory instead of physical, etc.
e Hide complex and unreliable hardware, and variety of hardware
e Provide illusions like “sole application running” or “infinite memory”
e For each area, can ask: what is the HW interface, what is the nicer
interface the OS provides, what is the even nicer one the library provides?

+ Implements the abstractions: manage resources
e Manage application interaction with hardware resources

e Provide standard services: program execution, I/O operations, file
system manipulation, communication, accounting

e Allow multiple applications and multiple users to share resources
effectively without hurting one another
e Protect applications from one another and from crashing the system

v

e

Some Examples
¢ What if a user tries to access disk blocks directly?
¢ What if a user program can access all RAM memory?

¢ What if a user runs the following code:
int main() {
while(1) fork();
}

¢ What if many programs are running infinite loops?
while (1) ;

g)

Operating System Roles

¢+ Referee
e Resource allocation among users, applications
e Protection/isolation of users, applications from one another

¢ lllusionist
e Each application appears to have the entire machine to itself
» Processor/processors, all of memory (and in fact vastly more than all of
physical memory), reliable storage, reliable network transport
+ Glue
e Libraries, user interface widgets, ...
e Communication between users, applications

Example: File Systems
o
¢ Referee role
e Prevent users from accessing others’ files without permission

¢ lllusionist role
e Files can grow (nearly) arbitrarily large
e User program doesn’t need to know where the file data are or
how they are organized or are accessed by the processor
e Files persist even if machine crashes in the middle of a save

¢ Glue role

e Named directories, printf, ...
ke

9/11/19

Example: Web Application

(1) (2)

Read file: index.html

HTTP GET index.html

Client Server

index.html

4)

HTTP web page

¢ How does the server manage many simultaneous client
requests and share CPU and other resources among them?

¢ How do we keep the client safe from spyware embedded in
scripts on a web site?

%
I\ A

Example: Reading from Disks

+ Different types of disks, with very different structures
e Floppy, various kinds of hard drives, Flash, IDE, ...

¢ Different hardware mechanisms to read, different layouts of
data on disk, different mechanics

¢ Floppy disk has ~20 commands to interact with it
¢ Read/write have 13 parameters; controller returns 23 codes

¢ Motor may be on or off, don’t read when motor off, etc.
¢ And this is only one disk type

¢ Instead, a simple abstraction: data are in files, you read
from and write to files using simple interfaces

% OS manages all the rest

22

Today

¢ Course information and logistics
¢ What is an operating system?
+ Evolution of operating systems

¢ Why study operating systems?

23

2

Exponential Growth in Computing and
Communications (courtesy Jim Gray)

+ #transistors on chip doubles every 18 months
¢ 100x per decade
+ Progress in next 18 months
= ALL previous progress
o New storage = sum of all past storage (ever)
e New processing = sum of all past processing power
e Bandwidth grows at even faster pace

W

9/11/19

Personal Computers Then and Now

* Osborne Executive PC (1982) vs Apple iPhone
100x weight, 500x volume, 10x cost (adjusted), 1/100 clock frequency

1=

A Typical Academic Computer (1981 vs. 2011)
U |
1981 2011 Ratio
Intel CPU transistors 0.1M 1.9B ~20000x
Intel CPU core x clock 10Mhz 10x2.4Ghz ~2,400x
DRAM 1MB 64GB 64,000x
Disk 5MB 1TB 200,000x
Network BW 10Mbits/sec 10GBits/sec 1000x
Address bits 32 64 2x
Users/machine 10s <1 >10x
$/machine $30K $1.5K 1/20x
$/Mhz $30,000 $1,500/24,000 1/4,800x 46

Computer performance over time

1981 1997 2014 (::1":71*9 81)

Uniprocessor speed (MIPS) 1 200 2500 2.5K
CPUs per computer 1 1 10+ 10+

Processor MIPS/$ $100K $25 $0.20 500K
DRAM Capacity (MiB)/$ 0.002 2 1K 500K
Disk Capacity (GiB)/$ 0.003 7 25K 10M
Home Internet 300bps 256Kbps 20 Mbps 100K
Machine room network (shared) (swiched) (swiched) 1%
Ratio of users 100:1 11 tseveral 100+

to computers

Transistor Count on Processor Chips over Time
o

Transistor Count by Year, 1971-2018

100,000,000,000

10,000,000,000

1,000,000,000

100,000,000

10,000,000

1,000,000

100,000

10,000 I

185 19%

®ee 9

9/11/19

Transistor Count on Processor Chips over Time

20,000,000,000
10,000,000,000
5,000,000,000

1,000,000,000
500,000,000

100,000,000
50,000,000

10,000,000
5,000,000

Transistor count

1,000,000
500,000

100,000
50,000

10,000
5,000

otel 4304
1,000
2

O AV > P XS DL > PN > o
n T A s e e o N N L A N A PP
FEEEEEEE S S S S

Year of introduction

Phase 2: Hardware gets Cheaper, Human Expensive
L |

+ Use cheap terminals to share a computer

¢ Time-sharing OS

+ Unix enters the mainstream as hardware got cheaper
¢ Problems: thrashing as the number of users increases

App2
\ Time-sharing OS \

Hardware

Ejvé 31

Phase 1: Hardware Expensive, Human Cheap

+ User at console, OS as subroutine library
+ Batch monitor (no protection): load, run, print
+ Alot of the (expensive) hardware sits idle a lot. Developments:
e Interrupts; overlap I/O and CPU
e Direct Memory Access (DMA)
o Memory protection: keep bugs to individual programs
e Multics: designed in 1963 and run in 1969; multiprogramming
¢ Assumption: No bad people. No bad programs. Minimum interactions

Application
0S

Hardware

ey

30

Phase 3: HW Cheaper, Human More Expensive

¢ Personal computer
e Altos OS, Ethernet, Bitmap display, laser printer (79)

e Pop-menu window interface, email, publishing SW,
spreadsheet, FTP, Telnet

e Became >200M units per year
¢ PC operating system

e Memory protection

e Multiprogramming

e Networking

First PC at Xerox PARC
ket

32

9/11/19

Now: > 1 Machines per User

+ Pervasive computers

e \Wearable computers

e Communication devices

e Entertainment equipment

e Computerized vehicle

e Phones: billions units /year
¢ OS are specialized

e Embedded OS

e Specialtly general-purpose OS
(e.g. i0S, Android)

33

Now: Multiple Processors per “Machine”

+ Multiprocessors
e SMP: Symmetric MultiProcessor

e ccNUMA: Cache-Coherent Non-Uniform Memory
Access

e General-purpose, single-image OS with
multiproccesor support
+ Multicomputers
e Supercomputer with many CPUs and high-speed
communication
e Specialized OS with special message-passing
support
¢ Clusters
e A network of PCs
e Server OS w/ cluster

abstraction (e.g. MapReduce)
K

Now: Multiple “Cores” per Processor

+ Multicore or Manycore transition
e Intel Xeon processor has 10 cores / 20 threads
e New Intel Xeon Phi has 72 cores, Core X goes up to 18 cores
e nVidia GPUs has thousands of FPUs

¢ Accelerated need for software support
e OS support for many cores
e Parallel programming of applications

Scalable On DieFabric

IA IA IA IA IA 1A IA IA
Core | Core Core Core Core Core Core | Core

Fixed|

Function Last Level Cache
Units,

IA IA IA IA 1A 1A IA IA
Core | Core Core Core Core Core Core Core

35

Now: Datacenter as A Computer

¢ Cloud computing
e Hosting data in the cloud
e Software as services
e Examples:

» Google, Microsoft, Salesforce,
VolP telephony, ...

+ Utility computing
e Pay as you go for computing resources
e Outsourced warehouse-scale hardware and software

e Examples:
» Amazon, Google, Micros

9/11/19

9/11/19

¢ OS is a key part of a computer system
e |t makes our life better (or worse)
e ltis “magic” to realize what we want
e It gives us “power” (reduce fear factor)
Learn how computer systems really work, who does what, how

* o

+ Learn about concurrency
e Parallel programs run on OS
e OS runs on parallel hardware
e Best way to learn concurrent programming
+ Understand how a system works
e How many procedures does a key stroke invoke?
e What happens when your application references 0 as a pointer?

OS history
o
WSS Multics Level 1
MS/DOS Vh?IS VAZ{370 UlilX Level 2
Windows BSD UNIX Mach Level 3
Windoows NT VM\;Vare Linux NEXT MacOS Level 4
Windows 8 MacOS X Level 5
<<<<<<< Influence
Descendant Android i0S Level 6
Why Study OS?
o

Learn key CS concepts: abstraction, layering, virtualization, indirection

39

Today

¢ Course information and logistics
¢ What is an operating system?
¢ Evolution of operating systems

¢ Why study operating systems?

38

Why Study OS?

¢ Basic knowledge for many areas
e Networking, distributed systems, security, ...

¢ Build an OS

e Real OS is huge, but building a small OS will go a long way

¢ More employable

e Become someone who “understands systems”

e Join the top group of “athletes”

e Ability to build things from ground up

e Deeply understand abstractions and concurrency

Ko

40

10

Does COS318 Require A Lot of Time?
¢ Yes
¢ But less than a few years ago

¢ But yes

e

41

Why is Writing an OS Hard?

¢ Concurrent programming is hard

¢ Difficult to use high-level programming languages for OS
e device drivers are inherently low-level
e lack of debugging support (use simulation)
e real-time requirements
¢ Tension between functionality and performance
¢ Different contexts (mobile devices, data centers, embedded)

+ Portability and backward compatibility
e many APlIs are already fixed (e.g., GUI, networking)
e OS design tradeoffs change as hardware changes

Why is Writing an OS Hard

+ Needs to be reliable
e Does the system do what it was designed to do?
+ Needs to keep the system available
e What portion of the time is the system working?
e Mean Time To Failure (MTTF), Mean Time to Repair
+ Needs to keep the system secure
e Can the system be compromised by an attacker?
+ Needs to provide privacy

e Data is accessible only to authorized users

Main Techniques and Design Principles

+ Keep things simple
¢ Use abstraction
e hide implementation complexity behind simple interface
¢ Use modularity
e decompose system into isolated pieces
¢ What about performance?
e find bottlenecks --- the 80-20 rule
e use prediction and exploits locality (cache)

+ What about security and reliability?

Continuing research, particularly in light of new contexts

9/11/19

11

Things to Do

+ Today’ s material
e Read MOS 1.1-1.3
e Lecture available online
+ Next lecture
e Read MOS 1.4-1.5
+ Make “tent” with your name
e Use from now on till the end of the semester
¢ Use Piazza to find a partner
e Find a partner before end of next lecture for projects 1, 2, 3

e

45

9/11/19

12

