
9/11/19

1

COS 318: Operating Systems

Introduction

Jaswinder Pal Singh and a Fabulous Course Staff
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall19/cos318/

2

Today

u Course information and logistics

u What is an operating system?

u Evolution of operating systems

u Why study operating systems?

Information and Staff
u Website

l http://www.cs.princeton.edu/courses/archive/fall19/cos318/

u Textbooks
l Modern Operating Systems, 4th Edition, Tanenbaum and Bos

u Instructors
l Jaswinder Pal Singh, Office: 423 CS, Hours: Mon 1:30 – 3 pm

u Teaching assistants (offices and hours to be posted on web site)
l Samuel Ginzburg (ginzburg@p)
l James Heppenstall (jwmh@p)
l Haochen Li (haochenl@p)
l Ziyang Xu (ziyangx@cs.p)

u Undergraduate Assistants (to be finalized)
3

Grading

u Projects 70%
u Exam 20%

u Class Participation 10%

u Exam will be in-class, likely sometime after midterm
week (watch for announcements)

4

http://www.cs.princeton.edu/courses/archive/fall19/cos318/

9/11/19

2

5

Projects

u Build a small but real OS kernel, bootable on real PCs

u A lot of hacking (in C & x86 assembly) but very rewarding
u Projects

l Bootloader (150-300 lines)

l Non-preemptive kernel (200-250 lines)

l Preemptive kernel (100-150 lines)

l Inter-process communication and device driver (300-350 lines)

l Virtual memory (300-450 lines)

l File system (500+ lines)

6

Projects
u How

l Pair with a partner for project 1, 2 and 3
l Pair with a different partner for project 4 and 5
l Do the final project yourself (no partners)
l Design review at the end of week one
l All projects due Sundays at 11:55 pm

u Where to do the projects
l Develop on courselab machines, via remote login

l Instructions on how to develop and submit will be on the assignment web
pages

7

Project Grading

u Design Review
l Requirements will be specified for each project
l Sign up online for making appointments for design review etc
l 0-5 points for each design review
l 10% deduction for missing an appointment

u Project completion
l Assigned project points plus possible extra points

u Late policy for grading projects
l 1 hour: 98.6%, 6 hours: 92%, 1 day: 71.7%
l 3 days: 36.8%, 7 days: 9.7%

8

Logistics

u Precepts
l Two precept sessions: attend one

• Mon 7:30pm – 8:20pm in CS 104
• Tue 7:30pm – 8:20pm in CS 105

u For project 1
l Tutorial on assembly programming and kernel debugging

• Mon 9/16 and Tue 9/17: 7:30-8:20pm in CS 105
l Precept

• Mon 9/23 and Tue 9/24: 7:30-8:20pm in CS 105
l Design review

• 9/23 (Monday) 1:30pm – evening (Friend 010, unless changed)
• Sign up online (1 slot per team)

l Due: 9/29 (Sunday) 11:55pm

9/11/19

3

Use Piazza for Discussions

u Piazza is convenient
l Most of you love it (?)

u Search, ask and answer questions
l Students are encouraged to answer questions on Piazza
l Staff will try to answer in a timely manner

u Only use email if your question is personal/private
l For questions about your specific project grade: send email to

the TA in charge

9

Ethics and Other Issues

u Honor System
l Ask teaching staff if you are not sure
l Asking each other questions is okay: best place is on Piazza
l Work must be your own (or your team’s)

u If you discover any solutions online, tell staff right away

u Do not put your code or design on the web, in social media,
or anywhere public or available to others …

u Most important thing to do in this course:
Do not violate the Honor Code

10

11

COS318 in Systems Course Sequence
u Prerequisites

l COS 217: Introduction to Programming Systems
l COS 226: Algorithms and Data Structures

u 300-400 courses in systems
l COS318: Operating Systems
l COS320: Compiler Techniques
l COS333: Advanced Programming Techniques
l COS432: Information Security
l COS475: Computer Architecture

u Courses requiring or recommending COS318 as prerequisite
l COS 418: Distributed Systems
l COS 461: Computer Networks
l COS 518: Advanced Operating Systems
l COS 561: Advanced Computer Networks

12

Today

u Course information and logistics

u What is an operating system?

u Evolution of operating systems

u Why study operating systems?

9/11/19

4

13

What Is Operating System?

u Software between applications and hardware
u Provide abstractions to layers above
u Implement abstractions for and manage resources below

Hardware

Operating System

editor gcc Browser DVD Player

TCP/IP Networking

Virtual Memory

Hardware-Specific Software
and Device Drivers

File System

Scheduling

Graphics Processor

Address TranslationProcessors

Network

Hardware

Users

User-mode

Kernel-mode
Kernel-user Interface

(Abstract virtual machine)

Hardware Abstraction Layer

APP

System
Library

APP

System
Library

APP

System
Library

Disk

In a Little More Depth: The Software

15

What Does an Operating System Do?
u Provides abstractions to user-level software above

l User programs can deal with simpler, high-level concepts
• E.g. files instead of disk blocks, virtual memory instead of physical, etc.

l Hide complex and unreliable hardware, and the variety of hardware
l Provide illusions like “sole application running” or “infinite memory”
l For each area, can ask: what is the HW interface, what is the nicer

interface the OS provides, what is the even nicer one the library provides?

u Implements the abstractions: manage resources
l Manage application interaction with hardware resources
l Provide standard services: program execution, I/O operations, file system

manipulation, communication, accounting
l Allow multiple applications and multiple users to share resources

effectively without hurting one another
l Protect applications from one another and from crashing the system

16

What Does an Operating System Do?
u Provides abstractions to user-level software above

l User programs can deal with simpler, high-level concepts
• E.g. files instead of disk blocks, virtual memory instead of physical, etc.

l Hide complex and unreliable hardware, and variety of hardware
l Provide illusions like “sole application running” or “infinite memory”
l For each area, can ask: what is the HW interface, what is the nicer

interface the OS provides, what is the even nicer one the library provides?

u Implements the abstractions: manage resources
l Manage application interaction with hardware resources
l Provide standard services: program execution, I/O operations, file

system manipulation, communication, accounting
l Allow multiple applications and multiple users to share resources

effectively without hurting one another
l Protect applications from one another and from crashing the system

9/11/19

5

17

What Does an Operating System Do?
u Provides abstractions to user-level software above

l User programs can deal with simpler, high-level concepts
• E.g. files instead of disk blocks, virtual memory instead of physical, etc.

l Hide complex and unreliable hardware, and variety of hardware
l Provide illusions like “sole application running” or “infinite memory”
l For each area, can ask: what is the HW interface, what is the nicer

interface the OS provides, what is the even nicer one the library provides?

u Implements the abstractions: manage resources
l Manage application interaction with hardware resources
l Provide standard services: program execution, I/O operations, file

system manipulation, communication, accounting
l Allow multiple applications and multiple users to share resources

effectively without hurting one another
l Protect applications from one another and from crashing the system

18

Some Examples

u What if a user tries to access disk blocks directly?

u What if a user program can access all RAM memory?

u What if a user runs the following code:
int main() {

while(1) fork();
}

u What if many programs are running infinite loops?
while (1);

Operating System Roles

u Referee
l Resource allocation among users, applications
l Protection/isolation of users, applications from one another

u Illusionist
l Each application appears to have the entire machine to itself

• Processor/processors, all of memory (and in fact vastly more than all of
physical memory), reliable storage, reliable network transport

u Glue
l Libraries, user interface widgets, …
l Communication between users, applications

Example: File Systems

u Referee role
l Prevent users from accessing others’ files without permission

u Illusionist role
l Files can grow (nearly) arbitrarily large
l User program doesn’t need to know where the file data are or

how they are organized or are accessed by the processor
l Files persist even if machine crashes in the middle of a save

u Glue role
l Named directories, printf, …

9/11/19

6

Example: Web Application

u How does the server manage many simultaneous client
requests and share CPU and other resources among them?

u How do we keep the client safe from spyware embedded in
scripts on a web site?

Client Server index.html

 (1)
HTTP GET index.html

(4)
HTTP web page

(2)
Read file: index.html

(3)
File data

Example: Reading from Disks

u Different types of disks, with very different structures
l Floppy, various kinds of hard drives, Flash, IDE, …

u Different hardware mechanisms to read, different layouts of
data on disk, different mechanics

u Floppy disk has ~20 commands to interact with it
u Read/write have 13 parameters; controller returns 23 codes
u Motor may be on or off, don’t read when motor off, etc.
u And this is only one disk type

u Instead, a simple abstraction: data are in files, you read
from and write to files using simple interfaces

u OS manages all the rest
22

23

Today

u Course information and logistics

u What is an operating system?

u Evolution of operating systems

u Why study operating systems?

24

Exponential Growth in Computing and
Communications (Courtesy Jim Gray)

u #transistors on chip doubles every 18 months
u 100x per decade
u Progress in next 18 months

= ALL previous progress
l New storage = sum of all past storage (ever)
l New processing = sum of all past processing power
l Bandwidth grows at even faster pace

15 years ago

9/11/19

7

Personal Computers Then and Now

25
• Osborne Executive PC (1982) vs Apple iPhone

• 100x weight, 500x volume, 10x cost (adjusted), 1/100 clock frequency 26

A Typical Academic Computer (1981 vs. 2011)

1981 2011 Ratio

Intel CPU transistors 0.1M 1.9B ~20000x

Intel CPU core x clock 10Mhz 10´2.4Ghz ~2,400x

DRAM 1MB 64GB 64,000x

Disk 5MB 1TB 200,000x

Network BW 10Mbits/sec 10GBits/sec 1000x

Address bits 32 64 2x

Users/machine 10s < 1 >10x

$/machine $30K $1.5K 1/20x

$/Mhz $30,000 $1,500/24,000 1/4,800x

Computer performance over time
1.3 Operating Systems: Past, Present, and Future 27

1981 1997 2014 Factor
(2014/1981)

Uniprocessor speed (MIPS) 1 200 2500 2.5K

CPUs per computer 1 1 10+ 10+

Processor MIPS/$ $100K $25 $0.20 500K

DRAM Capacity (MiB)/$ 0.002 2 1K 500K

Disk Capacity (GiB)/$ 0.003 7 25K 10M

Home Internet 300 bps 256 Kbps 20 Mbps 100K

Machine room network
10 Mbps
(shared)

100 Mbps
(switched)

10 Gbps
(switched) 1000

Ratio of users
to computers

100:1 1:1 1:several 100+

Figure 1.8: Approximate computer server performance over time, reflecting the most widely used servers of
each era: in 1981, a minicomputer; in 1997, a high-end workstation; in 2014, a rack-mounted multicore
server. MIPS stands for “millions of instructions per second,” a measure of processor performance. The VAX
11/782 was introduced in 1982; it achieved 1 MIP. DRAM prices are from Hennessey and Patterson,
“Computer Architecture: A Quantitative Approach.” Disk drive prices are from John McCallum. The Hayes
smartmodem, introduced in 1981, ran at 300bps. The 10 Mbps shared Ethernet standard was also
introduced in 1981. One of the authors built his first operating system in 1982, used a VAX at his first job,
and owned a Hayes to work from home.

from expensive to cheap devices occurred with telephones over the past
hundred years. Initially, telephone lines were very expensive, and a single
line was shared among everyone in a neighborhood. Over time, of course,
both computers and telephones have become cheap enough to sit idle until
we need them.

Despite these changes, operating systems still face the same conceptual
challenges as they did fifty years ago. To manage computer resources for ap-
plications and users, they must allocate resources among applications, provide
fault isolation and communication services, abstract hardware limitations, and
so forth. Tremendous progress has been made towards improving the reliabil-
ity, security, efficiency, and portability of operating systems, but much more is
needed. Although we do not know precisely how computing technology or
application demand will evolve over the next 10-20 years, it is highly likely
that these fundamental operating system challenges will persist.

Early Operating Systems
Computers were
expensive; users

would wait.
The first operating systems were runtime libraries intended to simplify the
programming of early computer systems. Rather than the tiny, inexpensive
yet massively complex hardware and software systems of today, the first
computers often took up an entire floor of a warehouse, cost millions of

Transistor Count on Processor Chips over Time

9/11/19

8

Transistor Count on Processor Chips over Time

30

Phase 1: Hardware Expensive, Human Cheap

u User at console, OS as subroutine library
u Batch monitor (no protection): load, run, print
u A lot of the (expensive) hardware sits idle a lot. Developments:

l Interrupts; overlap I/O and CPU
l Direct Memory Access (DMA)
l Memory protection: keep bugs to individual programs
l Multics: designed in 1963 and run in 1969; multiprogramming

u Assumption: No bad people. No bad programs. Minimum interactions

hardwareHardware

Application
OS

31

Phase 2: Hardware gets Cheaper, Human Expensive

u Use cheap terminals to share a computer
u Time-sharing OS
u Unix enters the mainstream as hardware got cheaper
u Problems: thrashing as the number of users increases

hardware
Hardware

App1

Time-sharing OS
App2 App2. . .

32

Phase 3: HW Cheaper, Human More Expensive

u Personal computer
l Altos OS, Ethernet, Bitmap display, laser printer (79)
l Pop-menu window interface, email, publishing SW,

spreadsheet, FTP, Telnet
l Became >200M units per year

u PC operating system
l Memory protection
l Multiprogramming
l Networking

First PC at Xerox PARC

9/11/19

9

33

Now: > 1 Machines per User

u Pervasive computers
l Wearable computers
l Communication devices
l Entertainment equipment
l Computerized vehicle
l Phones: billions units /year

u OS are specialized
l Embedded OS
l Specialtly general-purpose OS

(e.g. iOS, Android)

34

Now: Multiple Processors per “Machine”
u Multiprocessors

l SMP: Symmetric MultiProcessor
l ccNUMA: Cache-Coherent Non-Uniform Memory

Access
l General-purpose, single-image OS with

multiproccesor support
u Multicomputers

l Supercomputer with many CPUs and high-speed
communication

l Specialized OS with special message-passing
support

u Clusters
l A network of PCs
l Server OS w/ cluster

abstraction (e.g. MapReduce)

35

Now: Multiple “Cores” per Processor
u Multicore or Manycore transition

l Intel Xeon processor has 10 cores / 20 threads
l New Intel Xeon Phi has 72 cores, Core X goes up to 18 cores
l nVidia GPUs has thousands of FPUs

u Accelerated need for software support
l OS support for many cores
l Parallel programming of applications

Scalable On Scalable On DieFabricDieFabric

HighHigh
BW BW

MemoryMemory
I/FI/F

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

Fixed Fixed
Function Function

UnitsUnits
Last Level CacheLast Level Cache

Scalable On Scalable On DieFabricDieFabric

HighHigh
BW BW

MemoryMemory
I/FI/F

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

IAIA
CoreCore

Fixed Fixed
Function Function

UnitsUnits
Last Level CacheLast Level Cache

36

Now: Datacenter as A Computer

u Cloud computing
l Hosting data in the cloud
l Software as services
l Examples:

• Google, Microsoft, Salesforce,
VoIP telephony, …

u Utility computing
l Pay as you go for computing resources
l Outsourced warehouse-scale hardware and software
l Examples:

• Amazon, Google, Micros

9/11/19

10

OS history

Descendant

Level 4

Level 5

Level 6

Level 3

Level 2

Level 1

Influence

MVS Multics

MS/DOS VM/370VMS UNIX

Windows BSD UNIX Mach

Windows NT VMWare Linux NEXT MacOS

iOSAndroid

Windows 8 MacOS X

38

Today

u Course information and logistics

u What is an operating system?

u Evolution of operating systems

u Why study operating systems?

39

Why Study OS?
u OS is a key part of a computer system

l It makes our life better (or worse)
l It is “magic” to realize what we want
l It gives us “power” (reduce fear factor)

u Learn how computer systems really work, who does what, how
u Learn key CS concepts: abstraction, layering, virtualization, indirection
u Learn about concurrency

l Parallel programs run on OS
l OS runs on parallel hardware
l Best way to learn concurrent programming

u Understand how a system works
l How many procedures does a key stroke invoke?
l What happens when your application references 0 as a pointer?

Why Study OS?

u Basic knowledge for many areas
l Networking, distributed systems, security, …

u Build an OS
l Real OS is huge, but building a small OS will go a long way

u More employable
l Become someone who “understands systems”
l Join the top group of “athletes”
l Ability to build things from ground up
l Deeply understand abstractions and concurrency

40

9/11/19

11

Does COS318 Require A Lot of Time?

u Yes

u But less than a few years ago

u But yes

41

Why is Writing an OS Hard?

u Concurrent programming is hard

u Difficult to use high-level programming languages for OS
l device drivers are inherently low-level
l lack of debugging support (use simulation)
l real-time requirements

u Tension between functionality and performance

u Different contexts (mobile devices, data centers, embedded)
u Portability and backward compatibility

l many APIs are already fixed (e.g., GUI, networking)
l OS design tradeoffs change as hardware changes

Why is Writing an OS Hard

u Needs to be reliable
l Does the system do what it was designed to do?

u Needs to keep the system available

l What portion of the time is the system working?

l Mean Time To Failure (MTTF), Mean Time to Repair

u Needs to keep the system secure

l Can the system be compromised by an attacker?

u Needs to provide privacy
l Data is accessible only to authorized users

Main Techniques and Design Principles

u Keep things simple
u Use abstraction

l hide implementation complexity behind simple interface
u Use modularity

l decompose system into isolated pieces
u What about performance?

l find bottlenecks --- the 80-20 rule
l use prediction and exploits locality (cache)

u What about security and reliability?

Continuing research, particularly in light of new contexts

9/11/19

12

45

Things to Do

u Today’s material
l Read MOS 1.1-1.3
l Lecture available online

u Next lecture
l Read MOS 1.4-1.5

u Make “tent” with your name
l Use from now on till the end of the semester

u Use Piazza to find a partner
l Find a partner before end of next lecture for projects 1, 2, 3

