
Mandatory Access Control
COS 316

Who enforces policy under DAC?

Guard

App

WWW

Only repository collaborators can
read code from private
repositories.

Read repo 1 codeWrite comment
to repo 2

Only repository collaborators can
comment on repositories.Repo 1 Repo 2

FBI

SNCC

Legend

Limitations of Discretionary Access Control

● Discretionary: subjects of the access control system also control access policies
○ In UNIX, owners determine read/write/execute access for themselves, group, and “other”
○ Subject can pass capabilities to anyone

● More subtle: no attempt to control what subjects do with data
○ UNIX process reads ~/.ssh/ida_rsa and writes output to public log
○ Can’t (trivially) revoke capabilities

● This is one reason it sufficient to compromise a single high privilege application,
not whole system, in order to extract private data

Who enforces policy under DAC?

Guard

App

WWW

Only repository collaborators can
read code from private
repositories.

Read repo 1 codeWrite comment
to repo 2

Only repository collaborators can
comment on repositories.Repo 1 Repo 2

Trusted Computing Base

Legend

The non-interference property

Informally:

A program is non-interferent if it’s transformations of data in low security domains (low)
are not influenced by data in higher security domains (high)

The non-interference property

M, a memory state including low and high memory, MH and ML, respectively

P: (M) → M*, a non-interference program execution over a memory state resulting in a
new memory state, if:

∀M1,M2 s.t. M1L = M2L
 ∧ P(M1) → M1*

 ∧ P(M2) → M2*

 ⇒ M1*L = M2*L

Enforcing Non-Interference with DAC

Discretionary Access Control policies can enforce non-interference by completely
partitioning the system

Repo 1

App

Repo 2

App

Guard

If this kind of looks like two virtual machines it’s

because this is usually how virtual machine

monitors control access to hardware!

Enforcing Non-Interference with DAC

Discretionary Access Control policies can enforce non-interference by completely
partitioning the system, or with careful, static sharing

Repo 1

App

Repo 2

App

Guard

Read-o
nly

WWW

Mandatory Access Control (MAC)

● Goal: data secrecy & integrity don’t rely on trusting applications at all
● All resource accesses governed by a global policy
● Subjects cannot change global policy
● Typically policy articulated in terms of data sources and sinks
● E.g.

○ label data with it’s sensitivity
○ define permitted flows between labels
○ Permit operations as long as information flow rules are not violated

A simple security label lattice

Public

Repo 1 Repo 2
Flow not permitted!

Flow not p
erm

itte
d!Flow not permitted!

Implementing MAC

There are very few MAC systems used in practice:

● SELinux - an extension to Linux originating from the NSA
○ Used in Android

● Mandatory Integrity Control - a Windows kernel subsystem limited to integrity
● TrustedBSD (in development)
● …

But lots of research systems

Implementing MAC

One general approach:

● Assign a security label to object (file, network endpoint, console, etc)
● Assign a floating label to subjects (running processes)

○ “Floating” because it changes dynamically

● Whenever moving/copying data, check that source label can flow to sink label
● Allow subject to “raise” its floating label, but not to “lower” it

Guard
Read

App
Repo 1 Repo 2

WWW

Write

Permissible, because write
couldn’t involve secret data

Public

Repo 2

Repo 1

Guard

Read

App
Repo 1 Repo 2

WWW

Write

Permissible, because write
couldn’t only involve data secret
to Repo 2

Public

Repo 2

Repo 1

Guard

Read

App
Repo 1 Repo 2

WWW
Write

Prohibited, because write to
Repo 1 could involve data secret
to Repo 2

X
Public

Repo 2

Repo 1

Guard

Read

App
Repo 1 Repo 2

WWW
Write

Prohibited, because write could
involve data secret from Repo 2
or Repo 1

X
Read

WriteX

Public

Repo 2

Repo 1

Mandatory Access Control in Practice

● Dates back to at least 1983
○ Defined in the DoDs Trusted Computer System Evaluation Criteria (aka the Orange Book)

● Very powerful guarantee!
○ Security policies on data do not rely on application correctness

● Why is it not more prevalent?

Why isn’t MAC more prevalent?

● Complexity: implementing MAC can be hard to get right

● Performance: lattice checks can be slow

● Flexibility: by design, applications cannot get around security policy

● Simplicity: MAC is harder to administer

Sound interesting? Come do research with me!

