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Limitations of Discretionary Access Control

● Discretionary: subjects of the access control system also control access policies
○ In UNIX, owners determine read/write/execute access for themselves, group, and “other”
○ Subject can pass capabilities to anyone

● More subtle: no attempt to control what subjects do with data
○ UNIX process reads ~/.ssh/ida_rsa and writes output to public log
○ Can’t (trivially) revoke capabilities

● This is one reason it sufficient to compromise a single high privilege application, 
not whole system, in order to extract private data



Who enforces policy under DAC?

Guard

App

WWW

Only repository collaborators can 
read code from private 
repositories.

Read repo 1 codeWrite comment
to repo 2

Only repository collaborators can 
comment on repositories.Repo 1 Repo 2

Trusted Computing Base

Legend



The non-interference property

Informally:

A program is non-interferent if it’s transformations of data in low security domains (low) 
are not influenced by data in higher security domains (high)



The non-interference property

M, a memory state including low and high memory, MH and ML, respectively

P: (M) → M*, a non-interference program execution over a memory state resulting in a 
new memory state, if:

∀M1,M2 s.t. M1L = M2L
                    ∧ P(M1) → M1*

                    ∧ P(M2) → M2*

                   ⇒   M1*L = M2*L



Enforcing Non-Interference with DAC

Discretionary Access Control policies can enforce non-interference by completely 
partitioning the system
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Enforcing Non-Interference with DAC

Discretionary Access Control policies can enforce non-interference by completely 
partitioning the system, or with careful, static sharing
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Mandatory Access Control (MAC)

● Goal: data secrecy & integrity don’t rely on trusting applications at all
● All resource accesses governed by a global policy
● Subjects cannot change global policy
● Typically policy articulated in terms of data sources and sinks
● E.g.

○ label data with it’s sensitivity
○ define permitted flows between labels
○ Permit operations as long as information flow rules are not violated
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Implementing MAC

There are very few MAC systems used in practice:

● SELinux - an extension to Linux originating from the NSA
○ Used in Android

● Mandatory Integrity Control - a Windows kernel subsystem limited to integrity
● TrustedBSD (in development)
● …

But lots of research systems



Implementing MAC

One general approach:

● Assign a security label to object (file, network endpoint, console, etc)
● Assign a floating label to subjects (running processes)

○ “Floating” because it changes dynamically

● Whenever moving/copying data, check that source label can flow to sink label
● Allow subject to “raise” its floating label, but not to “lower” it
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Mandatory Access Control in Practice

● Dates back to at least 1983
○ Defined in the DoDs Trusted Computer System Evaluation Criteria (aka the Orange Book)

● Very powerful guarantee!
○  Security policies on data do not rely on application correctness

● Why is it not more prevalent?



Why isn’t MAC more prevalent?

● Complexity: implementing MAC can be hard to get right

● Performance: lattice checks can be slow

● Flexibility: by design, applications cannot get around security policy

● Simplicity: MAC is harder to administer

Sound interesting? Come do research with me!


