Mandatory Access Control
COS 316

Who enforces policy under DAC? egenc

Only repository collaborators can

read code from private
repositories.

Only repository collaborators can
comment on repositories.

—/ X

Limitations of Discretionary Access Control

e Discretionary: subjects of the access control system also control access policies
o In UNIX, owners determine read/write/execute access for themselves, group, and “other”
o Subject can pass capabilities to anyone
e More subtle: no attempt to control what subjects do with data
o UNIXprocessreads ~/.ssh/ida_rsa and writes output to public log
o Can’t(trivially) revoke capabilities
e Thisis one reason it sufficient to compromise a single high privilege application,

not whole system, in order to extract private data

Who enforces policy under DAC? | eeend

Trusted Computing Base

Only repository collaborators can

read code from private
repositories.

Only repository collaborators can
comment on repositories.

—/ X

The non-interference property

Informally:

A program is non-interferent if it’s transformations of data in low security domains (low)
are not influenced by data in higher security domains (high)

The non-interference property

M, a memory state including low and high memory, M, and M , respectively

P: (M) > M’, a non-interference program execution over a memory state resulting in a
new memory state, if:

VMI,M2st. M1, =M2,
A P(M1)>M1
A P(M2) > M2
= M1 =M2",

Enforcing Non-Interference with DAC

Discretionary Access Control policies can enforce non-interference by completely
partitioning the system

Enforcing Non-Interference with DAC

Discretionary Access Control policies can enforce non-interference by completely
partitioning the system, or with careful, static sharing

=Y

WWwW

"

Mandatory Access Control (MAC)

Goal: data secrecy & integrity don’t rely on trusting applications at all
All resource accesses governed by a global policy
Subjects cannot change global policy
Typically policy articulated in terms of data sources and sinks
E.g.
o label data with it’s sensitivity

o define permitted flows between labels
o Permit operations as long as information flow rules are not violated

A simple security label lattice

Flow not permitted!

Implementing MAC

There are very few MAC systems used in practice:

e SELinux-an extension to Linux originating from the NSA
o Used in Android

e Mandatory Integrity Control - a Windows kernel subsystem limited to integrity
e TrustedBSD (in development)

But lots of research systems

Implementing MAC

One general approach:

e Assign a security label to object (file, network endpoint, console, etc)

e Assign afloating label to subjects (running processes)
o “Floating” because it changes dynamically

e Whenever moving/copying data, check that source label can flow to sink label
e Allow subject to “raise” its floating label, but not to “lower” it

Permissible, because write
couldn’tinvolve secret data

Permissible, because write
couldn’t only involve data secret

to REpoE

~

Prohibited, because write to
- could involve data secret

to Reped

Prohibited, because write could
involve data secret from -

or REpoH

Mandatory Access Control in Practice

e Dates back to at least 1983

o Defined in the DoDs Trusted Computer System Evaluation Criteria (aka the Orange Book)

e Very powerful guarantee!
o Security policies on data do not rely on application correctness

e Why isit not more prevalent?

Why isn't MAC more prevalent?

e Complexity: implementing MAC can be hard to get right
e Performance: lattice checks can be slow
e Flexibility: by design, applications cannot get around security policy

e Simplicity: MAC is harder to administer

Sound interesting? Come do research with me!

