Discretionary Access Control
COS 316

The Guard Model

O O Request

~—

Subject

Is subject allowed to
access resources?

| Guard

The Guard Model

A mechanism, leaves us with many questions:

What kinds of rules does the guard enforce?
Who gets to set or change the rules?

What is the granularity of subjects and objects?
Who gets to create new principals?

Answers to these questions help determine the expressivity, performance, and security
of the system.

Consider a GitHub-like Ecosystem

Continuous
Integrati

Autograder

e Centralcode DB
e Apps access DB resources to provide extra
services
} e Application access must be restricted:

o E.g.don’t make private repos public

[Guard

Git repositories + code, user

profiles, organizations

Access Control Lists (ACLSs)

Let's Start with User Permissions

Associate a list of (user, permissions) with each resource

/7 \
\ Repositories | /

cos316/assignment4-aalevy.git

\\\\\\\\\\\\\5‘_-_—__—__}i?¥—[(aalevy, [PUSH,PULL]), (kap, [PUSH,PULL]), (will, [PULL])] |

Implementing ACLs: Inline with Object

Repository Table
id name
1 cos3l6/assignment4-aalevy

2 tock/tock

language

Golang

Rust

acl

“[(aalevy, [PUSH,PULL]), (kap, [PUSH,PULL]), ..

.]”

Implementing ACLs: Normalize

...

ACL Table Eselect (acls.user, acls.permission)
. from repositories, acls where
repo_id | user permission : repositories.name = ‘cos31l6/assignment4-aalevy’
: and acls.repo_id = repositories.id;
L malevy | push ||
1 kap push Repository Table
1 kap pull id name language
1 aalevy | pull 1 cos31l6/assignment4-aalevy Golang
1 will pull 2 tock/tock Rust
2 aalevy | push

ACLs in Action

Guard

o O Push(cos316/assignment4-aalevy)
—

~ Error!

aalevy

select count(x) > @

repositories.name =

and acls.repo_id =

and acls.permission

-

and acls.user = ‘aalevy’

~

cos316/assignment4-aalevy

/

zhseﬂi////////ﬁ/}i;z————_,/
¥ ﬂ

from repositories, acls where

‘cos316/assignment4-aalevy’
repositories.id

= ‘push’;

)

Extending ACLs to Apps: a-la UNIX

e Applications act on behalf of users

e When an application makes a request, it uses a particular user’s credentials
o Either one user per application
o Ordifferent users for different requests

e Works great for:
o Alternative Uls, e.g. the " git" client vs. the GitHub Web Ul both act on behalf of users

e Why might this be suboptimal?

Extending ACLs to Apps: Special Principles

e Create a unique principles for each app

o E.g.,the “autograder” principle

o Actsjust like a regular user
e When applications make request, they use their own, unique, credentials
e Add application principals to resource ACLs as desired

e Works when
o Applications need to operate with more than one user’s access
m E.g. the autograder needs to access private repositories owned by different students
o and less than any user’s access
m E.g. the autograder shouldn’t be able to access non COS316 repositories

Access Control Lists

Advantages Drawbacks
e Simple toimplement e Tradeoff granularity for simplicity
e Simple to administer o More granular permissions require more
e Easy to revoke access complex rules in the guard

e Doesn’tscale well

o E.g.need up to Users X Repos X Access Right
entries in ACL table

e Centralized access control
o Needs server’s cooperation to delegate access

Capabilities

User Permissions using Capabilities

Hand out communicable, unforgeable tokens encoding:

e Object
e Accessright

Users store capabilities, not the database
E.g.
“push(cos316/assignment4-aalevy)”

“pull(cos316/assignment4-aalevy)”

Implementing Capabilities with HMAC

HMAC - a keyed-hash function: hmac (secret_key, data) hash of data

fn gen_capability(op, repo) {
hmac(db_secret, fmt.Sprintf(“%s(%s)”, op, repo))
}

fn verify_capability(cap, op, repo) {
cap == hmac(db_secret, fmt.Sprintf(“%s(%s)”, op, repo))

}

Capabilities in Action

(— A

PUSfﬂcos316/assignment4—aalevy,

o o Cap) ,
~ » Guard cos316/assignment4-aalevy
~— Error!

Doesn’t matter
who

/

g’

verify_capability(Cap, “push”,

“cos316/assignment4-aalevy”)

Extending Capabilities to Applications

e Users can simply give applications a subset of their capabilities

[Autograder }
Push to
cos316/ass cos316/ass
gnment4 ignment4-.

Extending Capabilities to Applications
[N

PUSfﬂcos316/assignment4—aalevy,
Cap)
Autograder » Guard cos316/assignment4-aalevy

J(\
Error!

g’

/

“cos316/assignment4-aalevy”)

[/er'i fy_capability(Cap, “push”,

Capabilities

Advantages Drawbacks
e Decentralized access control e How do you revoke a capability?
© Anyone can “pass” anyone a capability e Moves complexity to users/clients
e Scaleswell o Users have to manage their capabilities now

e Granular permissions are simple to check

Next time...

We still have a problem!
The autograder is allowed to:

e read all cos316/ repositories
e commenton all cos316/ repositories

Can code from a private repository end up in a comment on a public repository?

