
Discretionary Access Control
COS 316



The Guard Model

Guard

Object

Object

Object

Object

Request

Is subject allowed to 
access resources?

Subject



The Guard Model

A mechanism, leaves us with many questions:

● What kinds of rules does the guard enforce?
● Who gets to set or change the rules?
● What is the granularity of subjects and objects?
● Who gets to create new principals?

Answers to these questions help determine the expressivity, performance, and security 
of the system.



Consider a GitHub-like Ecosystem

Continuous 
Integration

Git 
pages

PR bot

Git repositories + code, user 
profiles, organizations

Guard

Autograder

WWW

● Central code DB
● Apps access DB resources to provide extra 

services
● Application access must be restricted:

○ E.g. don’t make private repos public



Access Control Lists (ACLs)



Let’s Start with User Permissions

Associate a list of (user, permissions) with each resource

[(aalevy, [PUSH,PULL]), (kap, [PUSH,PULL]), (will, [PULL])]

cos316/assignment4-aalevy.git

[(aalevy, [PUSH,PULL]), (kap, [PUSH,PULL]), (will, [PULL])]

Repositories



Implementing ACLs: Inline with Object

Repository Table

id name language acl

1 cos316/assignment4-aalevy Golang “[(aalevy, [PUSH,PULL]), (kap, [PUSH,PULL]), ...]”

2 tock/tock Rust ...

... ... ... ...



Implementing ACLs: Normalize

Repository Table

id name language

1 cos316/assignment4-aalevy Golang

2 tock/tock Rust

... ... ...

ACL Table

repo_id user permission

1 aalevy push

1 kap push

1 kap pull

1 aalevy pull

1 will pull

2 aalevy push

... ... ...

select (acls.user, acls.permission)
  from repositories, acls where
    repositories.name = ‘cos316/assignment4-aalevy’
    and acls.repo_id = repositories.id;



ACLs in Action

Guard cos316/assignment4-aalevy
Push(cos316/assignment4-aalevy)

select count(*) > 0
  from repositories, acls where
    repositories.name = ‘cos316/assignment4-aalevy’
    and acls.repo_id = repositories.id
    and acls.user = ‘aalevy’
    and acls.permission = ‘push’;

aalevy

False
?

Error!



Extending ACLs to Apps: a-la UNIX

● Applications act on behalf of users
● When an application makes a request, it uses a particular user’s credentials

○ Either one user per application
○ Or different users for different requests

● Works great for:
○ Alternative UIs, e.g. the `git` client vs. the GitHub Web UI both act on behalf of users

● Why might this be suboptimal?



Extending ACLs to Apps: Special Principles

● Create a unique principles for each app
○ E.g., the “autograder” principle
○ Acts just like a regular user

● When applications make request, they use their own, unique, credentials
● Add application principals to resource ACLs as desired
● Works when

○ Applications need to operate with more than one user’s access
■ E.g. the autograder needs to access private repositories owned by different students

○ and less than any user’s access
■ E.g. the autograder shouldn’t be able to access non COS316 repositories



Access Control Lists
Advantages

● Simple to implement
● Simple to administer
● Easy to revoke access

Drawbacks

● Tradeoff granularity for simplicity
○ More granular permissions require more 

complex rules in the guard
● Doesn’t scale well

○ E.g. need up to Users X Repos X Access Right 
entries in ACL table

● Centralized access control
○ Needs server’s cooperation to delegate access



Capabilities



User Permissions using Capabilities

Hand out communicable, unforgeable tokens encoding:

● Object
● Access right

Users store capabilities, not the database

E.g.

“push(cos316/assignment4-aalevy)”

“pull(cos316/assignment4-aalevy)”



Implementing Capabilities with HMAC

HMAC - a keyed-hash function: hmac(secret_key, data) hash of data

fn gen_capability(op, repo) {
  hmac(db_secret, fmt.Sprintf(“%s(%s)”, op, repo))
}

fn verify_capability(cap, op, repo) {
  cap == hmac(db_secret, fmt.Sprintf(“%s(%s)”, op, repo))
}



Capabilities in Action

Guard cos316/assignment4-aalevy

Push(cos316/assignment4-aalevy,
Cap)

verify_capability(Cap, “push”,
               “cos316/assignment4-aalevy”)

Doesn’t matter 
who

False
?

Error!



Extending Capabilities to Applications

● Users can simply give applications a subset of their capabilities

Autograder

aalevy

Push to 
cos316/ass
ignment4-.
.

Push to 
cos316/ass
ignment4-.
.

Push to 
cos316/ass
ignment4-.
.



Extending Capabilities to Applications

Guard cos316/assignment4-aalevy

Push(cos316/assignment4-aalevy,
Cap)

verify_capability(Cap, “push”,
               “cos316/assignment4-aalevy”)

False
?

Error!

Autograder



Capabilities
Advantages

● Decentralized access control
○ Anyone can “pass” anyone a capability

● Scales well
● Granular permissions are simple to check

Drawbacks

● How do you revoke a capability?
● Moves complexity to users/clients

○ Users have to manage their capabilities now



Next time...

We still have a problem!

The autograder is allowed to:

● read all cos316/ repositories
● comment on all cos316/ repositories

Can code from a private repository end up in a comment on a public repository?


