
Access Control
COS 316

Why might we want to control access
to resources?

Why might we not want to control
access to resources?

A (slightly) formal model

● Objects: the things being accessed
○ A file, database table, network socket, satellite imagery of “nuclear facilities,” missile launcher...

● Subjects: an entity that requests access to an object
○ A process, network endpoint, etc…
○ Principal: some unique a account or role, such as a user

● Authentication: a proof that a subject speaks for some principal
○ E.g. logging in with a username & password

● Authorization: the particular rules that govern subjects’ access to objects
● Secrecy: who might learn the contents of an object
● Integrity: who may have influenced the contents of an object

Ad-hoc access control

● Access policy enforcement is scattered throughout system

● Very common in applications with lots of users. Why?

fn (profile *Profile) viewProfile(user) (HTML) {
 if profile.public ||
 profile.friends.contains(user) {
 return profile.HTML
 } else {
 return HTML.Forbidden
 }
}

fn (profile *Profile) viewFullName(user) (HTML) {
 if profile.public || user.handle ==
 “NSA_Backdoor” {
 return profile.FullName.HTML
 } else {
 return HTML.Forbidden
 }
}

Ad-hoc access control

Profile Table

id full_name profile_pic handle bio

1 Amit Levy /i/1f3.png aalevy Dog dad, foodie,
yog...

2 Alan
Kaplan /i/a60.png kap

Enjoys long
function
names...

Friends Table

follower followee

1 2

2 1

1 4

1 5

... ...

● Application-specific access rules
● Data for rules stored separately from data objects

○ Really a problem of granularity

Problems Ad-hoc access control

● Policy is emergent

● Who can view a user’s full name?

fn (profile *Profile) viewProfile(user) (HTML) {
 if profile.public ||
 profile.friends.contains(user) {
 return profile.HTML
 } else {
 return HTML.Forbidden
 }
}

fn (profile *Profile) viewFullName(user) (HTML) {
 if profile.public || user.handle ==
 “NSA_Backdoor” {
 return profile.FullName.HTML
 } else {
 return HTML.Forbidden
 }
}

The Guard Model

Guard

Object

Object

Object

Object

Request

Is subject allowed to
access resources?

Subject

Examples of the Guard Model

● Kernel
○ File system permissions: as long as objects modeled as files, access checks are centralized
○ Reference monitor

● Networks
○ Firewall
○ Apache HTTP server’s .htaccess rules

● Databases
○ Table/database visibility
○ Limit ability to ALTER, UPDATE, DROP, etc

The Guard Model

A mechanism, leaves us with many questions:

● What kinds of rules does the guard enforce?
● Who gets to set or change the rules?
● What is the granularity of subjects and objects?
● Who gets to create new principals?

Answers to these questions help determine the expressivity, performance, and security
of the system.

What kinds of rules?

There are many “policy languages”

● Access control lists: which subjects can read/write which objects
● Capabilities: unforgeable tokens that encode specific rules on objects

○ Subjects unnamed

● Information flow: the relationship between data sources and data sinks
○ Neither subjects nor objects named, instead

Who sets the rules?

We will discuss two broad categories:

● Discretionary Access Control (DAC)
○ Very common, e.g. UNIX user/group permissions

● Mandatory Access Control (MAC)
○ Pretty uncommon, much more robust
○ E.g. SE-Linux & AppArmore, and lots of research systems

Granularity

Why doesn’t database just re-use UNIX file permissions?

● The objects in UNIX file permissions are files, with read/write/execute permissions
● But...
● Tables & schemas might span many files
● Databases might include several schemas or tables in a single file
● Alter, update, drop don’t map well to read/write/execute

○ E.g. UPDATE should retain layout of data in a file

Granularity

Why doesn’t web application re-use database permissions

Profile Table

id full_name profile_pic handle bio

1 Amit Levy /i/1f3.png aalevy Dog dad, foodie,
yog...

2 Alan
Kaplan /i/a60.png kap

Enjoys long
function
names...

Friends Table

follower followee

1 2

2 1

1 4

1 5

... ...

Centralized vs. Decentralized Access Control

Why don’t web applications re-use UNIX users/groups?

● Facebook does not have a UNIX user for you on their servers. Why?
● UNIX does not allow unprivileged users to create new principals
● Web applications run as a single UNIX user, and re-implement:

○ Authentication
○ Authorization
○ Guard
○ ...

Summary

● Access control is a reflection of some real-world policy
○ Design with care

● Ad-hoc access control is common, but problematic, so we want systems
● The guard model helps separate security enforcement from other functionality
● Behavior of security system determined by:

○ Policy rules
○ Granularity of subjects/objects
○ Mandatory vs. Discretionary
○ Centralized vs. Decentralized Principals

