Access Control
COS 316

Why might we want to control access
to resources?

= MIBEE BUSINESS CULTURE GEAR IDEAS MORE v SIGN IN SUBSCRIBE Q

The Complete Guide to Facebook Privacy

Despite repeated privacy lapses, Facebook offers a fairly robust set of tools to control
who knows what about you.

f v &

Facebook has never been particularly good at prioritizing your privacy. Your data powers its business,
after all. But recent revelations that a firm called Cambridge Analytica harvested the personal information
of 50 million unwitting Facebook users in 2015 has created new sense of urgency for those hoping for

some modicum of control over their online life. If you ever needed a wake-up call, this is it.

tools to control who knows what about you—both on the platform and around the web. The bad news:
Facebook doesn't always make those settings easy to find, and they may not all offer the level of

protection you want.

Fear not! Below, we'll walk you through the steps you need to take to keep advertisers, third-party apps,

cstranocers and Facebook itself at bav And if after all that vou still feel overlv exnosed? We'll chow vou how

@ TECHNCA o o o ccs e o

POLICY —

Meet the e-voting machine so easy to
hack, it will take your breath away

Virginia decertifies device that used weak passwords and wasn't updated in 10 years.

DAN GOODIN - 4/15/2015, 2:55 PM

Why might we not want to control
access to resources?

Trust but Verify: Auditing the Secure Internet of Things

Judson Wilson
Dan Boneh

Riad S. Wahby
Philip Levis

Henry Corrigan-Gibbs
Keith Winstein

{judsonw, rsw, henrycg, dabo, pal, keithw}@cs.stanford.edu
Stanford University

ABSTRACT

Internet-of-Things devices often collect and transmit sensitive
information like camera footage, health monitoring data,
or whether someone is home. These devices protect data
in transit with end-to-end encryption, typically using TLS
connections between devices and associated cloud services.

But these TLS connections also prevent device owners
from observing what their own devices are saying about
them. Unlike in traditional Internet applications, where the
end user controls one end of a connection (e.g., their web
browser) and can observe its communication, Internet-of-
Things vendors typically control the software in both the
device and the cloud. As a result, owners have no way to
audit the behavior of their own devices, leaving them little
choice but to hope that these devices are transmitting only
what, !

Samsung SmartThings, for example, use TLS to connect to
their respective cloud services. TLS provides useful guar-
antees: message integrity and confidentiality, and mutual
authentication of devices and servers.

However, the use of strong encryption on a locked LY
consumer device has a worrisome effect for privacy: you, the
device owner, cannot tell what your own devices are reporting
about you. For example, if you install a Nest thermostat or
camera in your home, you cannot observe the contents of its
traffic to verify that it’s only sending data of the kind the
vendor has promised.

Internet-of-Things applications pose new security and pri-
vacy concerns because both ends of a secure connection are
controlled by a single party: the vendor. While a Nest ther-
mostat runs Linux, the owner cannot log in to it or otherwise
control its operation. Because you cannot modify the ther-

A (slightly) formal model

e Objects: the things being accessed
o Afile, database table, network socket, satellite imagery of “nuclear facilities,” missile launcher...

e Subjects: an entity that requests access to an object
o Aprocess, network endpoint, etc...
o Principal: some unique a account or role, such as a user

e Authentication: a proof that a subject speaks for some principal
o E.g.loggingin with a username & password

e Authorization: the particular rules that govern subjects’ access to objects
e Secrecy: who might learn the contents of an object
e Integrity: who may have influenced the contents of an object

Ad-hoc access control

e Access policy enforcement is scattered throughout system

fn (profile *Profile) viewProfile(user) (HTML) {
if profile.public ||
profile.friends.contains (user) {

return profile.HTML

} else { fn (profile *Profile) viewFullName(user) (HTML) {
return HTML.Forbidden if profile.public || user.handle ==
} “NSA_Backdoor” {
} return profile.FullName.HTML
} else {

return HTML.Forbidden

}
}

e Verycommon in applications with lots of users. Why?

Ad-hoc access control

e Application-specific access rules

e Data for rules stored separately from data objects

o Really a problem of granularity

Profile Table

id full_name

1 Amit Levy

Alan
Kaplan

profile_pic

/i/1f3.png

/i/a60.png

handle

aalevy

kap

bio

Dog dad, foodie,
yog. ..

Enjoys long
function
names...

Friends Table

follower followee
1 2
2 1
1 4

Problems Ad-hoc access control

e Policyisemergent

fn (profile *Profile) viewProfile(user) (HTML) {

if profile.public ||

profile.friends.contains (user) {

return profile.HTML
} else {
return HTML.Forbidden
}
}

fn (profile *Profile) viewFullName(user) (HTML) {
if profile.public || user.handle ==
“NSA_Backdoor” {
return profile.FullName.HTML
} else {
return HTML.Forbidden
}
}

e \Who can view a user’s full name?

The Guard Model

O O Request

~—

Subject

Is subject allowed to
access resources?

| Guard

Examples of the Guard Model

e Kernel
o File system permissions: as long as objects modeled as files, access checks are centralized
o Reference monitor
e Networks
o Firewall
o Apache HTTP server’s .htaccess rules
e Databases
o Table/database visibility
o Limitabilityto ALTER, UPDATE, DROP, etc

The Guard Model

A mechanism, leaves us with many questions:

What kinds of rules does the guard enforce?
Who gets to set or change the rules?

What is the granularity of subjects and objects?
Who gets to create new principals?

Answers to these questions help determine the expressivity, performance, and security
of the system.

What kinds of rules?

There are many “policy languages”

e Access control lists: which subjects can read/write which objects
e Capabilities: unforgeable tokens that encode specific rules on objects
o Subjects unnamed

e Information flow: the relationship between data sources and data sinks
o Neither subjects nor objects named, instead

Who sets the rules?

We will discuss two broad categories:

e Discretionary Access Control (DAC)
o Verycommon,e.g. UNIX user/group permissions
e Mandatory Access Control (MAC)

o Pretty uncommon, much more robust
o E.g.SE-Linux & AppArmore, and lots of research systems

Granularity

Why doesn’t database just re-use UNIX file permissions?

The objects in UNIX file permissions are files, with read/write/execute permissions
But...

Tables & schemas might span many files

Databases might include several schemas or tables in a single file

Alter, update, drop don’t map well to read/write/execute
o E.g. UPDATE should retain layout of data in a file

Granularity

Why doesn’t web application re-use database permissions

Profile Table

id full_name

1 Amit Levy

Alan
Kaplan

profile_pic

/i/1f3.png

/i/a60.png

handle

aalevy

kap

bio

Dog dad, foodie,
yog. ..

Enjoys long
function
names. ..

Friends Table

follower followee
1 2
2 1
1 4

Centralized vs. Decentralized Access Control

Why don’t web applications re-use UNIX users/groups?

e Facebook does not have a UNIX user for you on their servers. Why?
e UNIX does not allow unprivileged users to create new principals

e Web applications run as a single UNIX user, and re-implement:
o Authentication
o Authorization
o Guard
O

Summary

e Access control is a reflection of some real-world policy
o Design with care

e Ad-hoc access control is common, but problematic, so we want systems
e The guard model helps separate security enforcement from other functionality

e Behavior of security system determined by:
Policy rules

Granularity of subjects/objects

Mandatory vs. Discretionary

Centralized vs. Decentralized Principals

(@)

o O O

