

COS 316: Principles of Computer System Design

Wyatt Lloyd

Why Do We Build Systems?

Abstract away complexity

• . . .

Distributed Systems are Highly Complex Internally

Concurrent access by many client

Distributed Systems are Highly Complex Internally Sharding, Geo-Replication, Concurrency

Distributed Systems are Highly Complex Internally

Sharding, Geo-Replication, Concurrency

Consistency Models:

Control how much of this complexity is abstracted away

Consistency Models

- Contract between a (distributed) system and the applications that run on it
- A consistency model is a set of guarantees made by the distributed system

Stronger vs Weaker Consistency

Application Code

Strongly Consistent Distributed System

Application Code

Weakly Consistent Distributed System

Stronger vs Weaker Consistency

- Stronger consistency models
 - + Easier to write applications
 - System must hide many behaviors
- Fundamental tradeoffs between consistency & performance
 - (Discuss CAP, PRAM, SNOW in 418!)
- Weaker consistency models
 - Harder to write applications
 Cannot (reasonably) write some applications
 - + System needs to hide few behaviors

Consistency Hierarchy

Behaves like a single machine

Everyone sees related operations in the same order

Linearizability == "Appears to be a Single Machine"

- External client submitting requests and getting responses from the system can't tell this is not a single machine!
- There is some total order over all operations
 - Processes all requests one by one
- Order preserves the real-time ordering between operations
 - If operation A completes before operation B begins, then A is ordered before B in real-time
 - If neither A nor B completes before the other begins, then there is no real-time order
 - (But there must be *some* total order)

Real-Time Ordering Examples

Real-Time Ordering Examples

		V		
W ₁ ,	r ₁ ,	w ₂ ,	r ₂ ,	W ₃

		V		
		V		
		V		
w ₁ ,	w ₂ ,	r ₂ ,	r ₂ ,	w ₃

V,
V
V
Χ

 $w_1, w_4, r_4, w_2, r_2, w_3, r_3, w_5, w_6, r_6$

Linearizability == "Appears to be a Single Machine"

- There is some total order over all operations
 - Processes all requests one by one
- Order preserves the real-time ordering between operations
 - If operation A completes before operation B begins, then A is ordered before B in real-time
 - If neither A nor B completes before the other begins, then there is no real-time order
 - (But there must be *some* total order)

How to Provide Linearizability?

1. Use a single machine 🙄

- 2. Use "state-machine replication" on top of a consensus protocol like Paxos
 - Distributed system appears to be single machine that does not fail!!
 - Covered extensively in 418

Consistency Hierarchy

Behaves like a single machine

Everyone sees related operations in the same order

Consistency Hierarchy

Causal+ Consistency

Eventual Consistency

Causal+ Consistency Informally

- 1. Writes that are potentially causally related must be seen by everyone in the same order.
- 2. Concurrent writes may be seen in a different order by different entities.
 - Concurrent: Writes not causally related
 - Potential causality: event a could have a causal effect on event b.
 - Think: is there a path of information from *a* to *b*?
 - *a* and *b* done by the same entity (e.g., me)
 - *a* is a write and *b* is a read of that write
 - + transitivity

Causal+ Sufficient

Employment retained

Purchas e retained

↓ Then ↓

Error 404 – File not found

Deletion retained

Causal+ Sufficient

Causal+ Not Sufficient

(Need Linearizability)

- Need a total order of operations
 - e.g., Alice's bank account ≥ 0
- Need a real-time ordering of operations
 - e.g., Alice changes her password, Bob cannot login with old password

Consistency Hierarchy

Eventual Consistency

- Anything goes for now...
 - (If updates stop, eventually all copies of the data are the same)
- But, eventually consistent systems often try to provide consistency and often do
 - e.g., Facebook's TAO system provided linearizable results 99.9994% of the time [Lu et al. SOSP '15]
- "Good enough" sometimes
 - e.g., 99 vs 100 likes

Consistency Model Summary

- Consistency model specifies strength of abstraction
 - Linearizability

 Causal+

 Eventual
 - Stronger hides more, but has worse performance
- When building an application, what do you need?
 - Select system(s) with necessary consistency
 - Always safe to pick stronger
- When building a system, what are your guarantees?
 - Must design system such that they always hold
 - Must confront fundamental tradeoffs with performance
 - What is more important?