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Why Do We Build Systems?

* Abstract away complexity



Distributed Systems are Highly
Complex Internally
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Distributed Systems are Highly
Complex Internally
Sharding, Geo-Replication, Concurrency




Distributed Systems are Highly
Complex Internally
Sharding, Geo-Replication, Concurrency

Consistency Models:

Control how much of this
complexity is abstracted away




Consistency Models

« Contract between a (distributed) system and the
applications that run on it

A consistency model is a set of made
by the distributed system



Stronger vs Weaker Consistency
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Stronger vs Weaker Consistency

« Stronger consistency models
+ Easier to write applications
- System must hide many behaviors

* Fundamental tradeoffs between consistency & performance
* (Discuss CAP, PRAM, SNOW in 418!)

* Weaker consistency models
- Harder to write applications
Cannot (reasonably) write some applications
+ System needs to hide few behaviors



Consistency Hierarchy

Linearizability Behaves like a single machine
Causal+ Consistency Everyone sees related
* operations in the same order

Eventual Consistency Anything goes



Linearizability ==
“Appears to be a Single Machine”

« External client submitting requests and getting responses from
the system can'’t tell this is not a single machine!

* There is some over all operations
* Processes all requests one by one

 Order preserves the between operations

* If operation A before operation B :
then A is ordered before B in real-time

* If neither A nor B completes before the other begins,
then there is no real-time order

 (But there must be some total order)



Real-Time Ordering Examples
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L inearizable?
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L inearizable?
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L inearizable?
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Linearizable?

P, |— w(x=1) -|

Pg |— W(X=2) -I

i | wix=3)
P

D |-W(X:4) —| |-W(X:5) _|
" |— W(X=6) -I

L F ro=a o -2 | rio-s - i0-6 W/

W‘|’ W4’ r45 W2’ r25 W37 r3, W5, W6, r6



L inearizable?

P, | wix=1)
P, | wix=2)

Pe



Linearizability ==
“Appears to be a Single Machine”

* There is some over all operations
* Processes all requests one by one

* Order preserves the between
operations
* If operation A before operation B :

then A is ordered before B in real-time

* If neither A nor B completes before the other begins,
then there is no real-time order
« (But there must be some total order)



How to Provide Linearizability?

L )

1. Use a single machine (<

2. Use “state-machine replication” on top of a
consensus protocol like Paxos

* Distributed system appears to be single machine that
does not fail!!

« Covered extensively in 418



Consistency Hierarchy

Linearizability Behaves like a single machine
Causal+ Consistency Everyone sees related
* operations in the same order

Eventual Consistency Anything goes



Consistency Hierarchy

Linearizability

Causal+ Consistency
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Causal+ Consistency Informally

1. Writes that are causally related must
be seen by everyone in the same order.

2. Concurrent writes may be seen in a different
order by different entities.

« Concurrent: Writes not causally related

» Potential causality: event a have a causal
effect on event b.
 Think: is there a path of information from a to b?
« a and b done by the same entity (e.g., me)

* ais a write and b is a read of that write
* + transitivity



Causal+ Sufficient
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Causal+ Sufficient

(®) I am a new customer.
Wvatt likes (You'll create a password later)
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Causal+ Not Sufficient
(Need Linearizability)

* Need a total order of operations
* e.g., Alice’s bank account = 0

* Need a real-time ordering of operations

* e.g., Alice changes her password, Bob cannot login with
old password



Consistency Hierarchy

Linearizability Behaves like a single machine
Causal+ Consistency Everyone sees related
* operations in the same order

Eventual Consistency Anything goes



Eventual Consistency

* Anything goes for now...

* (If updates stop,
eventually all copies of the data are the same)

* But, eventually consistent systems often try to
provide consistency and often do

* e.g., Facebook’s TAO system provided linearizable
results 99.9994% of the time [Lu et al. SOSP ‘15]

« “Good enough” sometimes
*e.g., 99 vs 100 likes



Consistency Model Summary

» Consistency model specifies strength of abstraction
» Linearizability [1 Causal+ [ Eventual
« Stronger hides more, but has worse performance

* When building an application, what do you need?
« Select system(s) with necessary consistency
 Always safe to pick stronger

* When building a system, what are your guarantees?
» Must design system such that they always hold

* Must confront fundamental tradeoffs with performance
« What is more important?



