Consistency
A

COS 316: Principles of Computer System Design

Wyatt Lloyd

Why Do We Build Systems?

* Abstract away complexity

Distributed Systems are Highly
Complex Internally

Sharding

>
2
p
>
>

(Geo)-Replication

~
~
~

v

A A b b b

2

Concurrent access by many client

Distributed Systems are Highly
Complex Internally
Sharding, Geo-Replication, Concurrency

Distributed Systems are Highly
Complex Internally
Sharding, Geo-Replication, Concurrency

Consistency Models:

Control how much of this
complexity is abstracted away

Consistency Models

« Contract between a (distributed) system and the
applications that run on it

A consistency model is a set of made
by the distributed system

Stronger vs Weaker Consistency

Application Code

Application Code

Strongly Consistent
Distributed System

Weakly Consistent
Distributed System

Stronger vs Weaker Consistency

« Stronger consistency models
+ Easier to write applications
- System must hide many behaviors

* Fundamental tradeoffs between consistency & performance
* (Discuss CAP, PRAM, SNOW in 418!)

* Weaker consistency models
- Harder to write applications
Cannot (reasonably) write some applications
+ System needs to hide few behaviors

Consistency Hierarchy

Linearizability Behaves like a single machine
Causal+ Consistency Everyone sees related
* operations in the same order

Eventual Consistency Anything goes

Linearizability ==
“Appears to be a Single Machine”

« External client submitting requests and getting responses from
the system can'’t tell this is not a single machine!

* There is some over all operations
* Processes all requests one by one

 Order preserves the between operations

* If operation A before operation B :
then A is ordered before B in real-time

* If neither A nor B completes before the other begins,
then there is no real-time order

 (But there must be some total order)

Real-Time Ordering Examples

P, | wix=1)
Py I— w(x=2) —l

Mythical

Single .
Machine

Real-Time Ordering Examples

P, | wix=1)
Py w(Xx=2) —l
= I f w(x=3) —|

Mythical \ /
Single L
Machine

L inearizable?

P, | wix=1)
P, | wix=2)

e |

N

L inearizable?

Py | wix=1) 4

o bwead

P. |— W(x=3) -|
P_ =2 =} r0=3 -

|_
P, |-r(X)=1 —||- r(x)=2 —|

L inearizable?

P, | wix=1)
P, | wix=2)

P = (X)=2 === r(x)=3 =

P = r(X)=1 === r(x)=2 =

P, | r(x);2 —F-

V

| inearizable?

11233

DODD x

;R N I T

o) e e)

XXXXX

N—" N—" N—" N—" N—"
| - | - | - S | -

22222

LS S S | - |-

DDDDD

| inearizable?
)

L inearizable?

P, |— w(x=1) -I

Pg |— w(x=2) -|

Po | wix=3)
P

D |-W(X=4) —| |-W(X:5) _|
e I— W(X=0) -|

" Frig-2 Jf r00=3 || =6 - rt0-s o/

W11 W21 r25 W45 WS, r3, W6, r6’ W5’ r5

OR

Wiy Wy, Wy, Ty Wy, Ig W, Ty W, Ig

OR

W-11 W2, r21 WB, r3, W4, WG, r6’ W5, r5

L inearizable?

x| wix=1)

] | wix=2) 4

o | wie=3)

b Fwi=t) | wix=s) 4

: |— W(x=6) -|

o b b o hos o X

U U U U _TU

Linearizable?

P, |— w(x=1) -|

Pg |— W(X=2) -I

i | wix=3)
P

D |-W(X:4) —| |-W(X:5) _|
" |— W(X=6) -I

L F ro=a o -2 | rio-s - i0-6 W/

W‘|’ W4’ r45 W2’ r25 W37 r3, W5, W6, r6

L inearizable?

P, | wix=1)
P, | wix=2)

Pe

Linearizability ==
“Appears to be a Single Machine”

* There is some over all operations
* Processes all requests one by one

* Order preserves the between
operations
* If operation A before operation B :

then A is ordered before B in real-time

* If neither A nor B completes before the other begins,
then there is no real-time order
« (But there must be some total order)

How to Provide Linearizability?

L)

1. Use a single machine (<

2. Use “state-machine replication” on top of a
consensus protocol like Paxos

* Distributed system appears to be single machine that
does not fail!!

« Covered extensively in 418

Consistency Hierarchy

Linearizability Behaves like a single machine
Causal+ Consistency Everyone sees related
* operations in the same order

Eventual Consistency Anything goes

Consistency Hierarchy

Linearizability

Causal+ Consistency

v

Eventual Consistency

Causal+ Consistency Informally

1. Writes that are causally related must
be seen by everyone in the same order.

2. Concurrent writes may be seen in a different
order by different entities.

« Concurrent: Writes not causally related

» Potential causality: event a have a causal
effect on event b.
 Think: is there a path of information from a to b?
« a and b done by the same entity (e.g., me)

* ais a write and b is a read of that write
* + transitivity

Causal+ Sufficient

Friends

h ﬂ,-
23S

l Then l
New Job!

Employment
retained

(@ Add to Cart l
l Then l

1
\JCart v

Purchas
e
retained

Error
404 - File not found

Deletion
retained

Causal+ Sufficient

(®) I am a new customer.
Wvatt likes (You'll create a password later)

My Little Pony.

o
Zen

l Then l

Causal+ Not Sufficient
(Need Linearizability)

* Need a total order of operations
* e.g., Alice’s bank account = 0

* Need a real-time ordering of operations

* e.g., Alice changes her password, Bob cannot login with
old password

Consistency Hierarchy

Linearizability Behaves like a single machine
Causal+ Consistency Everyone sees related
* operations in the same order

Eventual Consistency Anything goes

Eventual Consistency

* Anything goes for now...

* (If updates stop,
eventually all copies of the data are the same)

* But, eventually consistent systems often try to
provide consistency and often do

* e.g., Facebook’s TAO system provided linearizable
results 99.9994% of the time [Lu et al. SOSP ‘15]

« “Good enough” sometimes
*e.g., 99 vs 100 likes

Consistency Model Summary

» Consistency model specifies strength of abstraction
» Linearizability [1 Causal+ [Eventual
« Stronger hides more, but has worse performance

* When building an application, what do you need?
« Select system(s) with necessary consistency
 Always safe to pick stronger

* When building a system, what are your guarantees?
» Must design system such that they always hold

* Must confront fundamental tradeoffs with performance
« What is more important?

