Virtualization

COS 316 Lecture 16

Amit Levy
Administrativia
• Assignment 4: Object Relational Mapper
 • Due tomorrow (Nov. 5th)
• Which names and values are right?
 • Any names and values can be correct, this is just an analysis tool
 • They have to be consistent with the rest of the framework
Midterm: Naming Analysis

- Allocation:
 - How are names and values chosen?
 - Not how those names and values are stored.

- Translation:
 - A function from names to values
Why do we care?

- Help us understand systems—how they are implemented, how they might perform, what semantics should we expect.
- Help us design systems—if we don’t know how to allocate or translate names and values, we probably need to choose different names/values.
Virtualization
• Virtual machines host multiple “guest” operating systems

• Database transactions allow interleaving requests from multiple clients to remain consistent
 • More on what “consistent” means on Wednesday

• Virtual LAN host isolated local area networks on the same network infrastructure
First: Resource Management through Multiplexing

- Dividing resource by time, or into sub-resources (e.g. TDMA, FDMA, CDMA)
 - How is the resource shareable?

- Provisioning resource division (e.g. congestion control, CSMA)
 - Who gets which share?

- Framing requests (e.g. Ethernet/IP/TCP headers)
 - Which requests/responses are for me?
Who is responsible for enforcement?
UNIX Network Sockets

Application

```go
c conn := net.Dial("princeton.edu:80", "tcp")

conn.Send("GET / HTTP/1.0\r\n...")

conn.Recv(buf)
```

Kernel

Ethernet device
Who enforces *carrier-sense multiple access (CSMA)*?

a. Application

b. Kernel

c. Network device (e.g. Ethernet card)
Who enforces IP header framing?

a. Application

b. Kernel

c. Network device (e.g. Ethernet card)
Who enforces **TCP congestion control**?

a. Application

b. Kernel

c. Network device (e.g. Ethernet card)
Who enforces **TCP header framing**?

a. Application

b. Kernel

c. Network device (e.g. Ethernet card)
Who enforces **HTTP header framing**?

a. Application
b. Kernel
c. Network device (e.g. Ethernet card)
• Network device “virtualizes” physical layer as a bit-stream
• Kernel “virtualizes” ethernet as endpoint in an IP network
• Kernel “virtualizes” IP endpoint as TCP connections
Virtualization as a form of abstraction

Virtualization is the act of presenting a single resource to multiple users as though they each have exclusive access to some resource.
func Send(data []byte, from_addr Addr, to_addr Addr) {
 full_packet := make([]byte, ETHERNET_FRAME_LENGTH)
 copy(packet[:ETHERNET_HEADER_LENGTH + IP_HEADER_LENGTH], myHeader(from_addr, to_addr))
 copy(packet[IP_HEADER_LENGTH:], data)
 // OK, lots of details elided
 raw_device := EthernetDevice.Lock()
 raw_device.Send(packet)
 raw_device.Unlock()
}
So why use virtualization layers?
So why use virtualization layers?

• Abstraction: Hard to get the details right

• Portability: Details depend on physical, link, network, and transport layers

• Enforced resource management
Virtualization as a form of Resource Management

- Fixed vs arbitrary number of applications
- Mandatory vs cooperative sharing
- Virtual vs explicit sharing
A virtualized resource needs to represent the *semantic* behavior of the underlying resource, but not necessarily *performance*.
How do we make virtualization performant?

System has global view of resource demands

• Merge redundant operations from multiple clients
 • Caching, schedule related operations together

• Aggressively interleave operations, but needs to maintain “illusion” of exclusive access.
 • Prof. Lloyd will talk about consistency on Wednesday

• Adapt the interface to make virtualization more efficient
 • Virtual machines & para-virtualization on Monday