

Network Layers

Jennifer Rexford COS 316 Guest Lecture

Modularity in System Design

Barbara Liskov, MIT

"Modularity based on abstraction is the way things get done."

Modularity Through Layering

Or, "Can I Explain How the Internet Works in One Lecture?"

Modularity Through Protocol Layering

Internet Protocol Layers

Application Transport Network Link Physical

Between software applications running on hosts

Between hosts while maintaining quality-of-service

Between nodes in different networks

Between physically-connected devices

Between a device and the physical medium

Internet Protocol Layers

HTTP, SMTP, FTP, Skype, etc. **Application Application Messages** TCP, **Transport** Reliable streams Datagrams UDP IP Best-effort global packet delivery Network Ethernet, WiFi, etc. Best-effort *local frame* delivery Link Bit delivery **Physical**

Layers in Action

Encapsulation: Layers of Headers

The Internet Hourglass with "Narrow Waist"

The "narrow waist" facilitates interoperability

Network Protocols

What is a Network Protocol?

- Rules that govern communication
 - How to identify the devices and establish connectivity
 - Message format (syntax) and meaning (semantics)
- A distributed solution to a problem
 - Deliver an ordered, reliable stream of bytes to another end-point
 - Share network bandwidth fairly
 - Compute shortest paths on a graph
 - Automatically learn how to reach remote hosts
 - Share an individual link's bandwidth fairly

Application: HyperText Transfer Protocol (HTTP)

Request

GET /courses/archive/spr12/cos461/ HTTP/1.1

Host: www.cs.princeton.edu

User-Agent: Mozilla/4.03

CRLF

Response

HTTP/1.1 200 OK

Date: Mon, 6 Feb 2012 13:09:03 GMT

Server: Netscape-Enterprise/3.5.1

Last-Modified: Mon, 7 Feb 2011 11:12:23 GMT

Content-Length: 21

CRLF

Site under construction

Transport Protocols: TCP and UDP

• **Demultiplexing:** port numbers

• Error detection: checksums

Transport: Transmission Control Protocol (TCP)

- Ordered, reliable stream of bytes
 - Built on top of best-effort packet delivery at the network layer (IP)
- Challenges with IP
 - Lost or delayed packets
 - Corrupted packets
 - Out-of-order packet arrivals
 - Receiver that runs out of space
 - Network that cannot handle the load

TCP: Lost or Delayed Packets

Waiting for an acknowledgment

TCP: Corrupted Data

- Sender computes a checksum
 - Sender sums up all of the bytes
 - And sends the sum to the receive
- Receiver checks the checksum
 - Received sums up all of the bytes
 - And compares against the checksum

Then what?

TCP: Out-of-Order Packet Arrivals

TCP: Receiver that Runs Out of Space

- Receiver maintains a window size
 - Amount of data it can buffer
- Advertises window to the sender
 - Amount sender can send without acknowledgment
- Ensures that sender does not send too much
 - While still sending as much as possible

Flow control!

Network that Cannot Handle the Load

Some TCP senders need to slow down...

• TCP congestion control (future lecture)!

Network Layer: Internet Protocol (IP)

- Best-effort global packet delivery
 - Packet delivery: each packet handled independently
 - Best-effort: allow loss, delay, corruption, and out-of-order delivery

IP: Best-Effort Packet Delivery is Simpler

- Never having to say you're sorry...
 - Don't reserve bandwidth and memory
 - Don't do error detection and correction
 - Don't remember anything from one packet to next
- Easier to survive failures
 - Transient disruptions are okay during failover
- Can run on nearly any link technology
 - Greater interoperability and evolution

IP: Statistical Multiplexing

- Data traffic is bursty
 - Logging in to remote machines
 - Exchanging e-mail messages
- Don't waste bandwidth
 - No traffic exchanged during idle periods
- Better to allow multiplexing
 - Different transfers share access to same links

IP: Scalable Global Packet Delivery

- Hierarchical IP addresses ("zip code")
 - Variable-length prefix, identified by mask length

Today's IP routers have ~800,000 prefixes

IP: Scalable Global Packet Delivery

Distributed global IP routing

IP: Scalable Global Packet Delivery

- Distributed, policy-based IP routing
 - Interdomain routing: diffusion of IP prefixes (Border Gateway Protocol)

Link Layer: Ethernet Local Area Networks

- Automatic bootstrapping of best-effort local frame delivery
 - MAC address in end-host network interface card
 - MAC learning to reach other hosts in the LAN
- When an Ethernet frame arrives
 - Switch inspects the *source MAC* address

Link Layer: Ethernet Local Area Networks

- Automatic bootstrapping of best-effort local frame delivery
 - MAC address in end-host network interface card
 - MAC learning and flooding to reach other hosts in the LAN
- When the frame has an unfamiliar destination
 - Switch forwards the frame out all interfaces
 - ... except the incoming interface

Putting it All Together: Crossing the Layers

- Crossing the layers
 - Application: HTTP request and response messages
 - Transport: TCP ordered reliable byte stream
 - Network: best-effort global IP packet delivery
 - Link: best-effort local Ethernet frame delivery

Putting it All Together: Crossing the Layers

- Naming at different layers
 - Application: http://www.cs.princeton.edu/courses/archive/spr12/cos461/
 - Transport: TCP connection to IP address 5.6.7.8 on port 80
 - Network: server host interface with IP address 5.6.7.8
 - Link: server host interface with MAC address 00:15:C5:49:04:A9

Putting it All Together: Crossing the Layers

- Routing at different layers
 - Application: maps request to local object /courses/archive/spr12/cos461/
 - Transport: directs TCP segments to specific transport port (e.g., port 80)
 - Network: directs IP packets toward IP destination prefix 5.6.7.0/24
 - Link: directs Ethernet frames to MAC address 00:15:C5:49:04:A9

Conclusion

- Modularity
 - The way to build and manage large systems
 - Protocol layering in computer networks
- Network protocol layers
 - Application, transport, network, link, and physical
 - Internet "hourglass" model with IP as the "narrow waist"
- Customized protocol designs
 - Separation of concerns that are unique to each layer
 - Content naming and delivery, ordered reliable byte stream, scalable best-effort delivery, autoconfiguration of best-effort frame delivery