Network Layers

Jennifer Rexford
COS 316 Guest Lecture
Modularity in System Design

“Modularity based on abstraction is the way things get done.”

Barbara Liskov, MIT
Modularity Through Layering

Or, “Can I Explain How the Internet Works in One Lecture?”
Modularity Through Protocol Layering

name

address

path
Internet Protocol Layers

- **Application**: Between software applications running on hosts
- **Transport**: Between hosts while maintaining quality-of-service
- **Network**: Between nodes in different networks
- **Link**: Between physically-connected devices
- **Physical**: Between a device and the physical medium
Internet Protocol Layers

Application
- Application Messages
 - HTTP, SMTP, FTP, Skype, etc.

Transport
- Reliable streams
- Datagrams
 - TCP, UDP
 - IP

Network
- Best-effort *global* packet delivery

Link
- Best-effort *local frame* delivery

Physical
- Bit delivery

- Ethernet, WiFi, etc.
Layers in Action

HTTP message

TCP segment

HTTP message

TCP segment

Ethernet frame

Ethernet frame
Encapsulation: Layers of Headers

- Application
- App-to-app channels
- Host-to-host connectivity
- Link hardware

- Get index.html
- Connection ID
- Source/Destination
- Link Address

- Ethernet header
- IP header
- TCP header
- HTTP message
The Internet Hourglass with “Narrow Waist”

The “narrow waist” facilitates interoperability
Network Protocols
What is a Network Protocol?

• Rules that govern communication
 • How to identify the devices and establish connectivity
 • Message format (syntax) and meaning (semantics)

• A distributed solution to a problem
 • Deliver an ordered, reliable stream of bytes to another end-point
 • Share network bandwidth fairly
 • Compute shortest paths on a graph
 • Automatically learn how to reach remote hosts
 • Share an individual link’s bandwidth fairly
Application: HyperText Transfer Protocol (HTTP)

Request

GET /courses/archive/spr12/cos461/ HTTP/1.1
Host: www.cs.princeton.edu
User-Agent: Mozilla/4.03
CRLF

Response

HTTP/1.1 200 OK
Date: Mon, 6 Feb 2012 13:09:03 GMT
Server: Netscape-Enterprise/3.5.1
Last-Modified: Mon, 7 Feb 2011 11:12:23 GMT
Content-Length: 21
CRLF
Site under construction
Transport Protocols: TCP and UDP

• **Demultiplexing:** port numbers

 ![Diagram showing client and server connections]

 - Client host
 - Service request for **5.6.7.8:80** (i.e., the Web server)
 - OS
 - Server host **5.6.7.8**
 - Web server (port 80)
 - Echo server (port 7)

• **Error detection:** checksums

 - IP
 - payload
 - detect corruption
Transport: Transmission Control Protocol (TCP)

• Ordered, reliable stream of bytes
 • Built on top of best-effort packet delivery at the network layer (IP)

• Challenges with IP
 • Lost or delayed packets
 • Corrupted packets
 • Out-of-order packet arrivals
 • Receiver that runs out of space
 • Network that cannot handle the load
TCP: Lost or Delayed Packets

Problem: Lost or Delayed Data

Solution: Timeout and Retransmit

Waiting for an acknowledgment
TCP: Corrupted Data

- **Sender computes a checksum**
 - Sender sums up all of the bytes
 - And sends the sum to the receiver

 \[
 134 + 212 = 346 \]

- **Receiver checks the checksum**
 - Received sums up all of the bytes
 - And compares against the checksum

 \[
 134 + 216 = 350

 \]

Then what?
TCP: Out-of-Order Packet Arrivals

Problem: Out of Order

Solution: Add Sequence Numbers
TCP: Receiver that Runs Out of Space

- Receiver maintains a *window size*
 - Amount of data it can buffer
- Advertises window to the sender
 - Amount sender can send without acknowledgment
- Ensures that sender does not send too much
 - While still sending as much as possible

Flow control!
Network that Cannot Handle the Load

• Some TCP senders need to slow down…

• TCP congestion control (future lecture)!
Network Layer: Internet Protocol (IP)

• Best-effort global packet delivery
 • Packet delivery: each packet handled independently
 • Best-effort: allow loss, delay, corruption, and out-of-order delivery
IP: Best-Effort Packet Delivery is Simpler

• Never having to say you’re sorry…
 • Don’t reserve bandwidth and memory
 • Don’t do error detection and correction
 • Don’t remember anything from one packet to next

• Easier to survive failures
 • Transient disruptions are okay during failover

• Can run on nearly any link technology
 • Greater interoperability and evolution
IP: Statistical Multiplexing

• Data traffic is bursty
 • Logging in to remote machines
 • Exchanging e-mail messages

• Don’t waste bandwidth
 • No traffic exchanged during idle periods

• Better to allow multiplexing
 • Different transfers share access to same links
IP: Scalable Global Packet Delivery

- Hierarchical IP addresses ("zip code")
 - Variable-length prefix, identified by mask length

Today's IP routers have ~800,000 prefixes
IP: Scalable Global Packet Delivery

- Distributed global IP routing
 - Internet: a “network of networks” (Autonomous Systems)

Today’s Internet has ~60,000 ASes

5.6.7.0/24
IP: Scalable Global Packet Delivery

• Distributed, policy-based IP routing
 • Interdomain routing: diffusion of IP prefixes (Border Gateway Protocol)
Link Layer: Ethernet Local Area Networks

• Automatic bootstrapping of best-effort local frame delivery
 • MAC address in end-host network interface card
 • MAC learning to reach other hosts in the LAN

• When an Ethernet frame arrives
 • Switch inspects the *source MAC* address
 • … and associates the address with the incoming interface

Switch learns how to reach A.
Link Layer: Ethernet Local Area Networks

• Automatic bootstrapping of best-effort local frame delivery
 • MAC address in end-host network interface card
 • MAC learning and flooding to reach other hosts in the LAN

• When the frame has an unfamiliar destination
 • Switch forwards the frame out all interfaces
 • … except the incoming interface

When in doubt, shout!
Putting it All Together: Crossing the Layers

• Crossing the layers
 • Application: HTTP request and response messages
 • Transport: TCP ordered reliable byte stream
 • Network: best-effort global IP packet delivery
 • Link: best-effort local Ethernet frame delivery
Putting it All Together: Crossing the Layers

- Naming at different layers
 - Application: http://www.cs.princeton.edu/courses/archive/spr12/cos461/
 - Transport: TCP connection to IP address 5.6.7.8 on port 80
 - Network: server host interface with IP address 5.6.7.8
 - Link: server host interface with MAC address 00:15:C5:49:04:A9
Putting it All Together: Crossing the Layers

• Routing at different layers
 • Application: maps request to local object /courses/archive/spr12/cos461/
 • Transport: directs TCP segments to specific transport port (e.g., port 80)
 • Network: directs IP packets toward IP destination prefix 5.6.7.0/24
 • Link: directs Ethernet frames to MAC address 00:15:C5:49:04:A9
Conclusion

• Modularity
 • The way to build and manage large systems
 • Protocol layering in computer networks

• Network protocol layers
 • Application, transport, network, link, and physical
 • Internet “hourglass” model with IP as the “narrow waist”

• Customized protocol designs
 • Separation of concerns that are unique to each layer
 • Content naming and delivery, ordered reliable byte stream, scalable best-effort delivery, autoconfiguration of best-effort frame delivery