
Resource Management

COS 316 Lecture 13

Amit Levy

1



Administrativia



• Assignment 4: Object Relational Mapper

• Released tomorrow (Nov. 5th)

• Due two weeks from tomorrow (Nov. 19th)

• General rule: something due every Tuesday, alternating assignment
and problem set

2



Term Paper: System Analysis

• Due on dean’s date

• Groups of 1 or 2 (groups highly encouraged)

• Topic proposals due after Thanksgiving break

• What is the paper about?

1. Pick an open source system, or component of an open source system

2. Describe it in detail using analytical tools from the course

• Expect ~10 pages, but no strict limit or minimum
3



Term Paper: Example Systems to Analyze

• Nix package manager

• Node Package Manager (NPM), Ruby gems, Rust crates, etc

• Kubernetes

• MapReduce, TensorFlow, Spark

• The Linux device driver API

• ActiveRecord from Ruby on Rails

• WordPress plugin system
4



Resource Management



• So far, we’ve talked about naming and caching as ways of making an
application simpler to organize, more efficient, etc.

• Rest of the semester we’ll focus on design principles for mediating
and managing multiple applications:

• Resource management

• Virtualization

• Access Control

5



What is resource management?

Recall one of our systems criteria from first lecture:
Mediates access to shared resources

Touched on this a little:

• Allocation in naming schemes are policies for sharing a namespace,
names indicate unique partitions of a resource

• Eviction algorithms are policies for sharing a cache

6



What is resource management?

• Policies and layers of abstraction that expose a resource to multiple
applications

• Policies and abstractions have important effect on:

• Performance

• Flexibility

• Security

7



Key Characteristics

• Fixed or arbitrary number of applications

• How many applications can the policy support? At what cost?

• Mandatory or cooperative sharing

• Are applications trusted to yield the resource?

• Virtual or explicit sharing

• Are applications aware they are using a shared resource?

8



Which shared resources are there?

Which resources are shared by controllers or request handlers in a web
application?

• CPU

• Memory

• Files, database, disk

• Local network controller

• Network and Internet links

9



Which shared resources are there?

Which resources are shared by controllers or request handlers in a web
application?

• CPU

• Memory

• Files, database, disk

• Local network controller

• Network and Internet links
9



Example: sharing the CPU

Figure 1: How do we run more applications than cores?
10



Three Policies for Sharing the CPU

1. Cooperative scheduling

2. Static scheduling

3. Round-robin timeslice scheduling

11



Figure 2: Cooperative Scheduling
12



Cooperative Scheduling

• Fixed number of applications

• Apps have to know who they are yielding to

• Cooperative sharing

• An application could never yield

• Explicit sharing

• Applications must be written with sharing in mind

13



Figure 3: Static Scheduling
14



Static Scheduling

• Fixed number of applications

• Scheduler subdivides time into fixed number of slots

• Mandatory sharing

• Applications preempted when their timeslice is up

• Virtual sharing

• Applications can be written as though they have exclusive access

15



Figure 4: Round-Robin Timesliced Scheduling
16



Round-Robin Timesliced Scheduling

• Arbitrary number of applications

• Just add more applications to the queue

• Mandatory & Cooperative sharing

• Applications preempted when their timeslice is up

• Applications may also yield via I/O or sleep operations

• Virtual sharing

• Applications can be written as though they have exclusive access

17



Performance Comparison

• Cooperative sharing

• CPU never has to do extra work for spurious context switches

• Applications switch when most convenient for performance

• Mandatory sharing

• Each application guaranteed some base level of performance

• Wasteful if application doesn’t use entire timeslice, or if context switches are
frequent

18



Flexibility Comparison

• Fixed number of applications clearly less flexible than arbitrary
number

• Virtual sharing means scheduling policy can be replaced under the
hood

• Cooperative sharing allows applications to use slightly more or
slightly less time on CPU

19



Security

• Applications can learn secrets from other applications

func application1(secret string) {
if secret == "password" {
spin_for_10_seconds()

}
yield()

}

20



Resource Management

• Most systems run applications that share lots of resources

• System defines abstractions and policies for sharing resources

• Key characteristics:

• Fixed vs arbitrary number of applications

• Mandatory vs cooperative sharing

• Virtual vs explicit sharing

• Resource management policies affect performance, flexibility, security
21



Up Next

1. Wednesday: Network Layers (Prof. Rexford)

2. Monday: Wireless Networking (Prof. Jamieson)

3. Wednesday: Congestion Control (Prof. Freedman)

22



References

23


	Administrativia
	Resource Management

