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Using a network file system
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3 Goals: Make remote operations appear

•Local

•Consistent

•Fast

3



•Distributed file systems
• Make a remote file system look local
• Today:  NFS (Network File System)

•Web servers
• Make remote content look local

Good performance? Caching to rescue!
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• With local FS, read sees data from “most recent” write, even 
if performed by different process

• “Read/write coherence”, linearizability

• Achieve the same with NFS?
• Perform all reads & writes synchronously to server
• Huge cost:  high latency, low scalability

• And what if the server doesn’t return?
• Options:  hang indefinitely, return ERROR

TANSTANFL
(There ain’t no such thing as a free lunch)
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Caching GOOD

Lower latency, better scalability

Consistency HARDER

No longer one single copy of data, to which 

all operations are serialized

6



Caching options

• Read-ahead:  Pre-fetch blocks before needed
• Write-through:  All writes sent to server
• Write-behind:  Writes locally buffered, send as batch

• Consistency challenges:

• When client writes, how do others caching data get updated?  
(Callbacks, …)

• Two clients concurrently write? (Locking, overwrite, …)



•Stateless protocol
• Recovery easy: crashed == slow server

• Messages over UDP (unencrypted)

•Read from server, caching in NFS client

•NFSv2 was write-through (i.e., synchronous)

•NFSv3 added write-behind
• Delay writes until close or fsync from application
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NFS



• Write-to-read semantics too expensive
• Give up caching, require server-side state, or …

• Close-to-open “session” semantics
• Ensure an ordering, but only between application close 
and open, not all writes and reads.

• If B opens after A closes, will see A’s writes

• But if two clients open at same time?  No guarantees
• And what gets written?  “Last writer wins”
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Exploring the consistency tradeoffs



• Recall challenge:  Potential concurrent writers
• Cache validation:

• Get file’s last modification time from server:  getattr(fh)

• Both when first open file, then poll every 3-60 seconds
• If server’s last modification time has changed,                   

flush dirty blocks  and invalidate cache

• When reading a block
• Validate:  (current time – last validation time < threshold)

• If valid, serve from cache.  Otherwise, refresh from server
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NFS Cache Consistency



•“Mixed reads” across version
• A reads block 1-10 from file, B replaces blocks 1-20,      
A then keeps reading blocks 11-20. 

•Assumes synchronized clocks.  Not really correct.

•Writes specified by offset
• Concurrent writes can change offset
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Some problems…



When statefulness helps
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Leases
• Client obtains lease on file for read or write

• “A lease is a ticket permitting an activity; the lease is valid until some 
expiration time.”

• Read lease allows client to cache clean data
• Guarantee: no other client is modifying file

• Write lease allows safe delayed writes
• Client can locally modify than batch writes to server
• Guarantee: no other client has file cached



•Client requests a lease 
• May be implicit, distinct from file locking
• Issued lease has file version number for cache coherence

•Server determines if lease can be granted
• Read leases may be granted concurrently
• Write leases are granted exclusively 

•If conflict exists, server may send eviction notices
• Evicted write lease must write back
• Evicted read leases must flush/disable caching
• Client acknowledges when completed
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Using leases



Bounded lease term simplifies recovery

• Before lease expires, client must renew lease

• Client fails while holding a lease?
• Server waits until the lease expires, then unilaterally reclaims 

• If client fails during eviction, server waits then reclaims

• Server fails while leases outstanding?  On recovery:
• Wait lease period + clock skew before issuing new leases

• Absorb renewal requests and/or writes for evicted leases



Statelessness:  Web caching
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Single Server, Poor Performance

• Single server
• Single point of failure
• Easily overloaded
• Far from most clients

• Popular content
• Popular site
• Flash crowd 
• Denial of Service attack
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Proxy Caches
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• Accept requests 
from multiple clients

• Takes request and 
reissues it to server

• Takes response and 
forwards to client



Forward Proxy

• Cache “close” to the client
• Under administrative control 

of client-side AS

• Explicit proxy
• Requires configuring browser

• Implicit proxy
• Service provider deploys an “on path” proxy
• … that intercepts and handles Web requests
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Reverse Proxy

• Cache “close” to server
• Either by proxy run by server or in 
third-party content distribution 
network (CDN)

• Directing clients to the proxy
• Map the site name to the 
IP address of the proxy
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Limitations of Web Caching

•Much content is not cacheable
• Dynamic data: stock prices, scores, web cams
• CGI scripts: results depend on parameters
• Cookies: results may depend on passed data
• SSL: encrypted data is not cacheable
• Analytics: owner wants to measure hits

•Stale data
• Or, overhead of refreshing the cached data
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Modern HTTP Video-on-Demand

• Download “content manifest” from origin server

• List of video segments belonging to video
• Each segment 1-2 seconds in length
• Client can know time offset associated with each
• Standard naming for different video resolutions:  320dpi, 720dpi, 1040dpi

• Client downloads segment (at certain res) using standard HTTP
• HTTP request can be satisfied by cache:  it’s a static object

• Client observes download time vs. segment duration, 
increases/decreases resolution if appropriate
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HTTP Caching

• Clients (and proxies) cache documents
• When should origin be checked for changes?
• Every time?  Every session?  Date?

• HTTP includes caching information in headers
• HTTP 0.9/1.0 used:  “Expires:  <date>”;  “Pragma: no-cache”
• HTTP/1.1 has “Cache-Control”

• “No-Cache”, “Max-age: <seconds>”
• “E-tag:  <opaque value>
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HTTP Response includes headers



HTTP Caching
• If not expired:  use cached copy
• If expired, use condition GET request to origin

• “If-Modified-Since:  <date>”,  “If-None-Match:  <etag>”
• 304 (“Not Modified”) or 200 (“OK”) response

GET / HTTP/1.1

Host: sns.cs.princeton.edu

Connection: Keep-Alive

If-Modified-Since: Tue, 1 Feb 2011 …
HTTP/1.1 304 Not Modified
Date: Wed, 02 Feb 2011 ….
Server: Apache/2.2.3 (CentOS)
Accept-Ranges: bytes



Cache validation in many-server world

• What happens in many servers and basing cache validation on 
“modification time”?

• Enter stronger validators based on content, not time

If-None-Match: "7a11f-10ed-3a75ae4a"

ETag: "7a11f-10ed-3a75ae4a"

GET / HTTP/1.1

Host: sns.cs.princeton.edu

Connection: Keep-Alive

If-Modified-Since: Tue, 1 Feb 2011 …
HTTP/1.1 304 Not Modified
Date: Wed, 02 Feb 2011 ….
Server: Apache/2.2.3 (CentOS)
Accept-Ranges: bytes



Caching GOOD

Lower latency, better scalability

Consistency HARDER

No longer one single copy of data, to which 

all operations are serialized
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