
Caching:
Network Files Systems + the Web

COS 316

Michael Freedman

Using a network file system

2

3 Goals: Make remote operations appear

•Local

•Consistent

•Fast

3

•Distributed file systems
• Make a remote file system look local
• Today: NFS (Network File System)

•Web servers
• Make remote content look local

Good performance? Caching to rescue!

4

• With local FS, read sees data from “most recent” write, even
if performed by different process

• “Read/write coherence”, linearizability

• Achieve the same with NFS?
• Perform all reads & writes synchronously to server
• Huge cost: high latency, low scalability

• And what if the server doesn’t return?
• Options: hang indefinitely, return ERROR

TANSTANFL
(There ain’t no such thing as a free lunch)

5

Caching GOOD

Lower latency, better scalability

Consistency HARDER

No longer one single copy of data, to which

all operations are serialized

6

Caching options

• Read-ahead: Pre-fetch blocks before needed
• Write-through: All writes sent to server
• Write-behind: Writes locally buffered, send as batch

• Consistency challenges:

• When client writes, how do others caching data get updated?
(Callbacks, …)

• Two clients concurrently write? (Locking, overwrite, …)

•Stateless protocol
• Recovery easy: crashed == slow server

• Messages over UDP (unencrypted)

•Read from server, caching in NFS client

•NFSv2 was write-through (i.e., synchronous)

•NFSv3 added write-behind
• Delay writes until close or fsync from application

8

NFS

• Write-to-read semantics too expensive
• Give up caching, require server-side state, or …

• Close-to-open “session” semantics
• Ensure an ordering, but only between application close
and open, not all writes and reads.

• If B opens after A closes, will see A’s writes

• But if two clients open at same time? No guarantees
• And what gets written? “Last writer wins”

9

Exploring the consistency tradeoffs

• Recall challenge: Potential concurrent writers
• Cache validation:

• Get file’s last modification time from server: getattr(fh)

• Both when first open file, then poll every 3-60 seconds
• If server’s last modification time has changed,

flush dirty blocks and invalidate cache

• When reading a block
• Validate: (current time – last validation time < threshold)

• If valid, serve from cache. Otherwise, refresh from server
10

NFS Cache Consistency

•“Mixed reads” across version
• A reads block 1-10 from file, B replaces blocks 1-20,
A then keeps reading blocks 11-20.

•Assumes synchronized clocks. Not really correct.

•Writes specified by offset
• Concurrent writes can change offset

11

Some problems…

When statefulness helps

12

Leases
• Client obtains lease on file for read or write

• “A lease is a ticket permitting an activity; the lease is valid until some
expiration time.”

• Read lease allows client to cache clean data
• Guarantee: no other client is modifying file

• Write lease allows safe delayed writes
• Client can locally modify than batch writes to server
• Guarantee: no other client has file cached

•Client requests a lease
• May be implicit, distinct from file locking
• Issued lease has file version number for cache coherence

•Server determines if lease can be granted
• Read leases may be granted concurrently
• Write leases are granted exclusively

•If conflict exists, server may send eviction notices
• Evicted write lease must write back
• Evicted read leases must flush/disable caching
• Client acknowledges when completed

14

Using leases

Bounded lease term simplifies recovery

• Before lease expires, client must renew lease

• Client fails while holding a lease?
• Server waits until the lease expires, then unilaterally reclaims

• If client fails during eviction, server waits then reclaims

• Server fails while leases outstanding? On recovery:
• Wait lease period + clock skew before issuing new leases

• Absorb renewal requests and/or writes for evicted leases

Statelessness: Web caching

16

Single Server, Poor Performance

• Single server
• Single point of failure
• Easily overloaded
• Far from most clients

• Popular content
• Popular site
• Flash crowd
• Denial of Service attack

17

Proxy Caches

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

18

• Accept requests
from multiple clients

• Takes request and
reissues it to server

• Takes response and
forwards to client

Forward Proxy

• Cache “close” to the client
• Under administrative control

of client-side AS

• Explicit proxy
• Requires configuring browser

• Implicit proxy
• Service provider deploys an “on path” proxy
• … that intercepts and handles Web requests

19

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

Reverse Proxy

• Cache “close” to server
• Either by proxy run by server or in
third-party content distribution
network (CDN)

• Directing clients to the proxy
• Map the site name to the
IP address of the proxy

20

Proxy
server

HTTP request

HTTP response

origin
server

origin
server

HTTP requestHTTP response

Limitations of Web Caching

•Much content is not cacheable
• Dynamic data: stock prices, scores, web cams
• CGI scripts: results depend on parameters
• Cookies: results may depend on passed data
• SSL: encrypted data is not cacheable
• Analytics: owner wants to measure hits

•Stale data
• Or, overhead of refreshing the cached data

21

Modern HTTP Video-on-Demand

• Download “content manifest” from origin server

• List of video segments belonging to video
• Each segment 1-2 seconds in length
• Client can know time offset associated with each
• Standard naming for different video resolutions: 320dpi, 720dpi, 1040dpi

• Client downloads segment (at certain res) using standard HTTP
• HTTP request can be satisfied by cache: it’s a static object

• Client observes download time vs. segment duration,
increases/decreases resolution if appropriate

22

HTTP Caching

• Clients (and proxies) cache documents
• When should origin be checked for changes?
• Every time? Every session? Date?

• HTTP includes caching information in headers
• HTTP 0.9/1.0 used: “Expires: <date>”; “Pragma: no-cache”
• HTTP/1.1 has “Cache-Control”

• “No-Cache”, “Max-age: <seconds>”
• “E-tag: <opaque value>

23

24

HTTP Response includes headers

HTTP Caching
• If not expired: use cached copy
• If expired, use condition GET request to origin

• “If-Modified-Since: <date>”, “If-None-Match: <etag>”
• 304 (“Not Modified”) or 200 (“OK”) response

GET / HTTP/1.1

Host: sns.cs.princeton.edu

Connection: Keep-Alive

If-Modified-Since: Tue, 1 Feb 2011 …
HTTP/1.1 304 Not Modified
Date: Wed, 02 Feb 2011 ….
Server: Apache/2.2.3 (CentOS)
Accept-Ranges: bytes

Cache validation in many-server world

• What happens in many servers and basing cache validation on
“modification time”?

• Enter stronger validators based on content, not time

If-None-Match: "7a11f-10ed-3a75ae4a"

ETag: "7a11f-10ed-3a75ae4a"

GET / HTTP/1.1

Host: sns.cs.princeton.edu

Connection: Keep-Alive

If-Modified-Since: Tue, 1 Feb 2011 …
HTTP/1.1 304 Not Modified
Date: Wed, 02 Feb 2011 ….
Server: Apache/2.2.3 (CentOS)
Accept-Ranges: bytes

Caching GOOD

Lower latency, better scalability

Consistency HARDER

No longer one single copy of data, to which

all operations are serialized

27

