Caching:
Network Files Systems + the Web

Bl vET | NOV (M
TES | TAM
fi| EN | TVM |}

COS 316

Michael Freedman

Using a network file system

Client kernel

System call layer

Y

Virtual file system layer @oOo=<

¥ v {

Local Local NFS
1

FS FS 2 client

Y Y }

Buffer cache

Y Y
Driver Driver
Message
to server
Local disks

g

V- node

Server kernel

Virtual file system layer BB 0

A
7
NFS vee Local Local
server FS 1 FS 2
A :
 / *
Buffer cache

Y ¥

Driver Driver
Message
from client
T Local disks

J

3 Goals: Make remote operations appear
Local
*Consistent
*Fast

Good performance? Caching to rescue!

Distributed file systems

* Make a remote file system look local
* Today: NFS (Network File System)

\Web servers
 Make remote content look local

TANSTANFL

(There ain’t no such thing as a free lunch)

* With local FS, read sees data from “most recent” write, even
iIf performed by different process

» “Read/write coherence”, linearizability

* Achieve the same with NFS?

* Perform all reads & writes synchronously to server
* Huge cost: high latency, low scalability

* And what if the server doesn’t return?
* Options: hang indefinitely, return ERROR

Caching GOOD

Lower latency, better scalability

Consistency HARDER

No longer one single copy of data, to which

all operations are serialized

Caching options

- Read-ahead: Pre-fetch blocks before needed
* Write-through: All writes sent to server
* Write-behind: Writes locally buffered, send as batch

» Consistency challenges:

* When client writes, how do others caching data get updated?
(Callbacks, ...)

 Two clients concurrently write? (Locking, overwrite, ...)

NFS

» Stateless protocol
* Recovery easy: crashed == slow server
* Messages over UDP (unencrypted)

*Read from server, caching in NFS client
*NFSv2 was write-through (i.e., synchronous)

*NFSv3 added write-behind

* Delay writes until c1ose or £sync from application

Exploring the consistency tradeoffs

« \Write-to-read semantics too expensive

 Give up caching, require server-side state, or ...

 Close-to-open “session” semantics

* Ensure an ordering, but only between application close
and open, not all writes and reads.

* |If B opens after A closes, will see A’s writes

 But if two clients open at same time? No guarantees
« And what gets written? “Last writer wins”

NFS Cache Consistency

* Recall challenge: Potential concurrent writers

« Cache validation:
» Get file’s last modification time from server: getattr (fh)

« Both when first open file, then poll every 3-60 seconds

* If server’s last modification time has changed,
flush dirty blocks and invalidate cache

* When reading a block

 VValidate: (current time - last validation time < threshold)

e |If valid, serve from cache. Otherwise, refresh from server

Some problems...

*“Mixed reads” across version

* A reads block 1-10 from file, B replaces blocks 1-20,
A then keeps reading blocks 11-20.

*Assumes synchronized clocks. Not really correct.

*Writes specified by offset
» Concurrent writes can change offset

When statefulness helps

| eases

* Client obtains lease on file for read or write

* “A lease is a ticket permitting an activity; the lease is valid until some
expiration time.”

 Read lease allows client to cache clean data
» Guarantee: no other client is modifying file

* Write lease allows safe delayed writes
* Client can locally modify than batch writes to server
» Guarantee: no other client has file cached

Using leases

*Client requests a lease
« May be implicit, distinct from file locking
* Issued lease has file version number for cache coherence

*Server determines if lease can be granted

* Read leases may be granted concurrently
» Write leases are granted exclusively

*|f conflict exists, server may send eviction notices
 Evicted write lease must write back
* Evicted read leases must flush/disable caching
* Client acknowledges when completed

Bounded lease term simplifies recovery

» Before lease expires, client must renew lease

* Client fails while holding a lease?
« Server waits until the lease expires, then unilaterally reclaims

* If client fails during eviction, server waits then reclaims

« Server fails while leases outstanding? On recovery:
» Wait /lease period + clock skew before issuing new leases

« Absorb renewal requests and/or writes for evicted leases

Statelessness: Web caching

Single Server, Poor Performance

 Single server
* Single point of failure
* Easily overloaded
 Far from most clients

* Popular content

Popular site

~lash crowd

Denial of Service attack

17

Proxy Caches

* Accept requests
from multiple clients

» Takes request and
reissues it to server

« Takes response and
forwards to client

origin
server

1

18

Forward Proxy

* Cache “close” to the client @ Proxy

. . . . /17" reqUe Server
* Under administrative control N
. . (o)
of client-side AS P
?(eo‘\) c®
@m =
<\
* Implicit proxy

» Service provider deploys an “on path” proxy
s ... that intercepts and handles Web requests

* Explicit proxy
* Requires configuring browser

Reverse Proxy

e« Cache “close” to server

* Either by proxy run by server or in
third-party content distribution
network (CDN)

* Directing clients to the proxy

* Map the site name to the
|IP address of the proxy

origin
server

L

origin
server

Limitations of Web Caching

*Much content is not cacheable
* Dynamic data: stock prices, scores, web cams
» CGl scripts: results depend on parameters
» Cookies: results may depend on passed data
* SSL: encrypted data is not cacheable
* Analytics: owner wants to measure hits

«Stale data
* Or, overhead of refreshing the cached data

Modern HTTP Video-on-Demand

* Download “content manifest” from origin server

* List of video segments belonging to video
* Each segment 1-2 seconds in length
* Client can know time offset associated with each
« Standard naming for different video resolutions: 320dpi, 720dpi, 1040dpi

* Client downloads segment (at certain res) using standard HTTP
« HTTP request can be satisfied by cache: it’s a static object

* Client observes download time vs. segment duration,
iIncreases/decreases resolution if appropriate

HTTP Caching

* Clients (and proxies) cache documents
* When should origin be checked for changes?
* Every time? Every session? Date?

* HTTP includes caching information in headers
« HTTP 0.9/1.0 used: “Expires: <date>”; “Pragma: no-cache”
« HTTP/1.1 has “Cache-Control”
* “No-Cache”, “Max-age: <seconds>"
« “E-tag: <opaque value>

HTTP Response includes headers

If

If

status
line

header
lines

Entity Body

HTTP Caching

* |[f not expired: use cached copy

* |If expired, use condition GET request to origin
« “If-Modified-Since: <date>”, “lIf-None-Match: <etag>”
* 304 (“Not Modified”) or 200 (“OK”) response

GET /HTTP/1.1
Host: sns.cs.princeton.edu

Connection: Keep-Alive HTTP/1.1 304 Not Modified
If-Modified-Since: Tue, 1 Feb 2011 ... Date: Wed, 02 Feb 2011

Server: Apache/2.2.3 (CentOS)
Accept-Ranges: bytes

Cache validation in many-server world

* What happens in many servers and basing cache validation on

“modification time”?

 Enter stronger validators based on content, not time

GET /HTTP/1.1

Host: sns.cs.princeton.edu

Connection: Keep-Alive
If-Modified-Since: Tue, 1 Feb 2011 ...
If-None-Match: "7a11f-10ed-3a75ae4a"

HTTP/1.1 304 Not Modified
Date: Wed, 02 Feb 2011
Server: Apache/2.2.3 (CentOS)
Accept-Ranges: bytes

ETag: "7a11f-10ed-3a7/5ae4a"

Caching GOOD

Lower latency, better scalability

Consistency HARDER

No longer one single copy of data, to which

all operations are serialized

27

