
CPU Caches

COS 316 Lecture 10

Amit Levy

1



Why do we cache?

Use caches to mask performance bottlenecks by replicating data closer

2



Design decisions that characterize a cache

• Look-aside vs. Look-through

• determines who is responsible for write/fetching data from backing store

• Write-through vs. Write-back

• determines whether items changed in the cache are written immediately to the backing store
(write-through) or only upon eviction (write-back)

• Write-allocate vs. Write-no-allocate

• determines whether we allocate space for an item when fetching and storing it (write-allocate)
or only when fetching (write-no-allocate) it

• Eviction policy

• determines which item(s) to evict when we run out of space in the cache

3



Figure 1: CPU Connected Directly to Memory

Which combination of look-aside vs look-through, write-through vs. write-back, and write-allocate
vs. write-no-allocate would you choose?

4



Figure 1: CPU Connected Directly to Memory

Which combination of look-aside vs look-through, write-through vs. write-back, and write-allocate
vs. write-no-allocate would you choose?

4



Locality: When a cache might be useful

• Useful data tends to continue to be useful

Figure 2: Temporal locality

• Useful data tends to be located “near” other useful data

1 2 3 4 5 6 7 8

Figure 3: Spatial locality

5



CPU Caches & Locality

CPU caches exploit both kinds of locality:

• Exploit temporal locality by remembering the contents of recently accessed memory

• Exploit spatial locality by fetching blocks of data around recently accessed memory

Figure 4: CPU Cache’s View of Memory Address

6



Figure 5: CPU Cache’s View of Memory Address

• Addresses with the same tag are added to cache together

• Spatial locality: bytes around previously accessed byte already in the cache

• Size of block offset determines block size:

• 𝑛 bits of block offset means blocks are 2𝑛 bytes

• E.g. 6 offset bits means 64 byte blocks

7



Figure 6: CPU cache stores a block at each Line

8



Exercise

Starting from 3-line cache that uses 4-bits for the offset, which of the following accesses,
performed in order, are hits or misses?

1. 0xff1200df

2. 0xff1200d3

3. 0x01cd3310

4. 0x01cd3310

5. 0xff1200df

9



Cache Read Algorithm

1. Look at memory address on processor

2. Search cache tags to find a matching block

3. Found in cache?

• Hit: return data from cache at offset from block

• Miss:

3.1 Read data block from main memory

3.2 Add data to cache

3.3 Return data from cache at offset from block

Which line do we evict for the new block?

10



Cache Read Algorithm

1. Look at memory address on processor

2. Search cache tags to find a matching block

3. Found in cache?

• Hit: return data from cache at offset from block

• Miss:

3.1 Read data block from main memory

3.2 Add data to cache

3.3 Return data from cache at offset from block

Which line do we evict for the new block?

10



Placement & Eviction Policies

Three common placement policies:

• Fully Associative

• Evict with: LRU, FIFO, NLRU, …

• Direct Mapped

• Eviction is trivial

• N-way Associative

• Combination of both

11



Fully Associative

Check all lines in the cache for a matching tag

What’s the disadvantage of fully associative cache?

12



Fully Associative

Check all lines in the cache for a matching tag

What’s the disadvantage of fully associative cache?

12



Direct Mapped

Index size determines number of indices

Check tag at line with matching index: if equal “hit”, “miss” otherwise

What’s the disadvantage of a direct mapped cache?

13



Direct Mapped

Index size determines number of indices

Check tag at line with matching index: if equal “hit”, “miss” otherwise

What’s the disadvantage of a direct mapped cache?

13



N-way Associative

Check all tags at line with matching index: if equal “hit”, “miss” otherwise

N = number of lines in each set

Index size determines number of sets

14



Exercise: N-way Associative

How many index bits for a 2-way set associative cache with 128 cache lines?

128 cache lines, 2 lines per set, how many sets? 128/2 = 64, how many bits? 𝑙𝑜𝑔2(64) = 6

15



Exercise: N-way Associative

How many index bits for a 2-way set associative cache with 128 cache lines?

128 cache lines, 2 lines per set, how many sets? 128/2 = 64, how many bits? 𝑙𝑜𝑔2(64) = 6

15



Coming up

• Next time: File system page cache & midterm mini-review

• Problem set 2 due tomorrow

• Assignment 3 due next Tuesday

• Midterm next Wednesday

16



References

17


