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Why do we cache?

Use caches to mask performance bottlenecks by replicating data closer
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Design decisions that characterize a cache

• Look-aside vs. Look-through

• determines who is responsible for write/fetching data from backing store

• Write-through vs. Write-back

• determines whether items changed in the cache are written immediately to the backing store
(write-through) or only upon eviction (write-back)

• Write-allocate vs. Write-no-allocate

• determines whether we allocate space for an item when fetching and storing it (write-allocate)
or only when fetching (write-no-allocate) it

• Eviction policy

• determines which item(s) to evict when we run out of space in the cache
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Figure 1: CPU Connected Directly to Memory

Which combination of look-aside vs look-through, write-through vs. write-back, and write-allocate
vs. write-no-allocate would you choose?
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Locality: When a cache might be useful

• Useful data tends to continue to be useful

Figure 2: Temporal locality

• Useful data tends to be located “near” other useful data

1 2 3 4 5 6 7 8

Figure 3: Spatial locality
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CPU Caches & Locality

CPU caches exploit both kinds of locality:

• Exploit temporal locality by remembering the contents of recently accessed memory

• Exploit spatial locality by fetching blocks of data around recently accessed memory

Figure 4: CPU Cache’s View of Memory Address
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Figure 5: CPU Cache’s View of Memory Address

• Addresses with the same tag are added to cache together

• Spatial locality: bytes around previously accessed byte already in the cache

• Size of block offset determines block size:

• 𝑛 bits of block offset means blocks are 2𝑛 bytes

• E.g. 6 offset bits means 64 byte blocks
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Figure 6: CPU cache stores a block at each Line
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Exercise

Starting from 3-line cache that uses 4-bits for the offset, which of the following accesses,
performed in order, are hits or misses?

1. 0xff1200df

2. 0xff1200d3

3. 0x01cd3310

4. 0x01cd3310

5. 0xff1200df
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Cache Read Algorithm

1. Look at memory address on processor

2. Search cache tags to find a matching block

3. Found in cache?

• Hit: return data from cache at offset from block

• Miss:

3.1 Read data block from main memory

3.2 Add data to cache

3.3 Return data from cache at offset from block

Which line do we evict for the new block?
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Placement & Eviction Policies

Three common placement policies:

• Fully Associative

• Evict with: LRU, FIFO, NLRU, …

• Direct Mapped

• Eviction is trivial

• N-way Associative

• Combination of both
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Fully Associative

Check all lines in the cache for a matching tag

What’s the disadvantage of fully associative cache?
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Direct Mapped

Index size determines number of indices

Check tag at line with matching index: if equal “hit”, “miss” otherwise

What’s the disadvantage of a direct mapped cache?
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N-way Associative

Check all tags at line with matching index: if equal “hit”, “miss” otherwise

N = number of lines in each set

Index size determines number of sets
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Exercise: N-way Associative

How many index bits for a 2-way set associative cache with 128 cache lines?

128 cache lines, 2 lines per set, how many sets? 128/2 = 64, how many bits? 𝑙𝑜𝑔2(64) = 6
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Coming up

• Next time: File system page cache & midterm mini-review

• Problem set 2 due tomorrow

• Assignment 3 due next Tuesday

• Midterm next Wednesday
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