
Introduction to Caching

COS 316 Lecture 8

Amit Levy

1

Figure 1: CPU Connected Directly to Memory

2

How long to run this code?

Characteristics
• CPU Instructions: 0.5ns (2GHz)

• Memory access: 100ns

int arr[1000];
for (i = 0; i < arr.len(); i++) { ++arr[i]; }

loop: ldr r2, [r0, #0]
add r2, r2, #1
str r2, [r0, #0]
subs r0, r0, #4
bne <loop>

3

How long to run this code?

loop: ldr r2, [r0, #0]
add r2, r2, #1
str r2, [r0, #0]
subs r0, r0, #4
bne <loop>

1. 2.5𝜇𝑆 (2, 500𝑛𝑆)

2. 30𝜇𝑆 (30, 000𝑛𝑆)

3. 201.5𝜇𝑆 (201, 500𝑛𝑠)

4

Why not just make everything fast?

Type Access Time Typical Size $/MB

Registers < 0.5𝑛𝑠 ~256 bytes $1000
SRAM/”Cache” 5𝑛𝑠 1-4MB $100
DRAM/”Memory” 50𝑛𝑠 GBs $0.01
Magnetic Disk 5𝑚𝑠 TBs $0.000001

• High cost of fast storage

• Physical limitations

• Not necessarily possible—e.g. accessing a web page across the world

5

A Solution: Caching

What is caching?

• Keep all data in bigger, cheaper, slower storage

• Keep copies of “active” data in smaller, more expensive, faster storage

Figure 2: CPU + Cache + Memory 6

What do we cache?

• Data stored verbatim in slower storage

• Previous computations—recomputation is also a kind of slow storage

• Examples:

• CPU memory hierarchy

• File system page buffer

• Content distribution network

• Web application cache

• Database cache

• Memoization

7

Locality

• Temporal locality: nearness in time

• Data accessed now probably accessed recently

• Useful data tends to continue to be useful

• Spatial locality: nearness in name

• Data accessed now “near” previously accessed data

• Memory addresses, files in the same directory, frames in a video…

8

When is caching effective?

Which of these workloads could we cache effectively?

Repeated Access Random Access Sequential access

1 2 3 4 5 6 7 8

A few popular items No pattern to accesses Access items in order
E.g. most social media E.g. large hash tables E.g. streaming a video

9

Caching Terminology

• Hit: when a requested item was in the cache

• Miss: when a requested item was not in the cache

• Hit rate and Miss rate: proportion of hits and misses, respectively

• Hit time and Miss time: time to access item in cache and not in cache, respectively

10

Effective access time

Effective aceess time is a function of:

• Hit and miss rates

• Hit and miss times

𝑡𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = (ℎ𝑖𝑡_𝑟𝑎𝑡𝑒)𝑡ℎ𝑖𝑡 + (1 − ℎ𝑖𝑡_𝑟𝑎𝑡𝑒)𝑡𝑚𝑖𝑠𝑠

aka, Average Memory Access Time (AMAT)

11

Characterizing a Caching System

• Effective access time

• Look-aside vs. Look-through

• Write-through vs. Write-back

• Allocation policy

• Eviction Policy

12

Who handles misses?

What happens when a requested item is not in the cache?

Figure 3: User requests an item not in the cache
13

Look-aside

Figure 4: Look-aside Cache

• Advantages: easy to implement, flexible

• Disadvantages: application handles consistency, can be slower on misses

14

Look-through

Figure 5: Look-through Cache

• Advantages: helps maintain consistency, simple to program against

• Disadvantages: harder to implement, less flexible

15

Handling Writes

• Caching creates a replica/copy of the data

• When you write, the data needs to be synchronized at some point

• But when?

16

Write-through

Write to backing store on every update

• Advantages:

• Cache and memory are always consistent

• Eviction is cheap

• Easy to implement

• Disadvantages:

• Writes are at least as slow as writes to the backing store

17

Write-back

Update only in the cache. Write “back” to the backing store only when evicting item from cache

• Advantages:

• Writes always at cache speed

• Multiple writes to same item combined

• Batch writes of related items

• Disadvantages:

• More complex to maintain consistency

• Eviction is more expensive

18

Write-allocate vs. Write-no-allocate

When writing to items not currently in the cache, do we bring them into the cache?

Yes == Write-Allocate
• Advantage: Exploits temporal locality: written data likely to be access again soon

No == Write-No-Allocate
• Advantage: Avoids spurious evictions if data not accessed soon

19

Eviction policies

Which items to we evict from the cache when we run out of space?

Many possible algorithms:

• Least Recently Used (LRU), Most Recently Used (MRU)

• Least Frequently Used (LFU)

• First-In-First-Out (FIFO), Last-In-First-Out (LIFO)

• …

Deciding factors include:

• Workload

• Performance
20

Challenges in Caching

• Speed: making the cache itself fast

• Cache Coherence: dealing with out-of-sync caches

• Performance: maximizing hit rate

• Security: avoiding information leakage through the cache

21

Remainder of this Section

• Caching in the CPU Memory Hierarchy

• File system page buffer

• Caching in the Web (Prof. Freedman)

• Assignment 3: Implement a look-aside, write-allocate cache

22

References

23

