
Git’s Content Addressable Storage

COS 316 Lecture 7

Amit Levy

1



Last time: UNIX File System Layers

Figure 1: UNIX File System Layers
2



UNIX File System Layers

An example of “location-based” naming schemes:

• The block layer names blocks based on the order in which they appear on disk

• The file layer names files based on where to find their blocks

• The inode number layer gives files names that correspond to their block number or location
within an inode table

• The absolute path name layer provides the location of the root directory

Location-based naming scheme

3



UNIX File System Layers

An example of “location-based” naming schemes:

• The block layer names blocks based on the order in which they appear on disk

• The file layer names files based on where to find their blocks

• The inode number layer gives files names that correspond to their block number or location
within an inode table

• The absolute path name layer provides the location of the root directory

Location-based naming scheme

3



UNIX File System Layers

An example of “location-based” naming schemes:

• The block layer names blocks based on the order in which they appear on disk

• The file layer names files based on where to find their blocks

• The inode number layer gives files names that correspond to their block number or location
within an inode table

• The absolute path name layer provides the location of the root directory

Location-based naming scheme

3



UNIX File System Layers

An example of “location-based” naming schemes:

• The block layer names blocks based on the order in which they appear on disk

• The file layer names files based on where to find their blocks

• The inode number layer gives files names that correspond to their block number or location
within an inode table

• The absolute path name layer provides the location of the root directory

Location-based naming scheme

3



UNIX File System Layers

An example of “location-based” naming schemes:

• The block layer names blocks based on the order in which they appear on disk

• The file layer names files based on where to find their blocks

• The inode number layer gives files names that correspond to their block number or location
within an inode table

• The absolute path name layer provides the location of the root directory

Location-based naming scheme

3



UNIX File System Layers

An example of “location-based” naming schemes:

• The block layer names blocks based on the order in which they appear on disk

• The file layer names files based on where to find their blocks

• The inode number layer gives files names that correspond to their block number or location
within an inode table

• The absolute path name layer provides the location of the root directory

Location-based naming scheme

3



UNIX File System Layers

An example of “location-based” naming schemes:

• The block layer names blocks based on the order in which they appear on disk

• The file layer names files based on where to find their blocks

• The inode number layer gives files names that correspond to their block number or location
within an inode table

• The absolute path name layer provides the location of the root directory

Location-based naming scheme

3



Today: When do locations fall short

• UNIX File System takes a location-centric view of the data it stores

• Point is: where on disk can I find this data I care about?

• When might this view be insufficient?

• Today: Git as a lens for:

• How location-based name fall short

• How content-based name can help

4



Version Control Overview



Figure 2: Version Control

5



A Brief History of Version Control

Local version control
• 1972: Source Code Control System (SCCS) developed by early UNIX developers

• 1982: Revision Control System (RCS) developed by GNU project

Client/Server Centralized Version Control
• 1986: Concurrent Versions System (CVS) developed as front-end to RCS to collaborate on
Amsterdam Compiler Kit at Vrije University

• 2000: Subversion (SVN) a redesign of CVS widely used by open source projects

Distributed Version Control
• 2000: BitKeeper developed to address Linux’s distributed and large community development
model

• 2005: Git & Mercurial developed concurrently to replace BitKeeper after BitMover starts
charging open source projects. 6



Figure 3: Centralized Version Control

7



Centralized Version Control

• Central server holds “canonical” version of each file

• Files committed and versioned independently

• All versioning and conflict resolution mediated by the server

Main role: efficiently store versions of the same file and coordinate updates to individual files.

UNIX file system is a pretty good match!

8



Centralized Version Control

• Central server holds “canonical” version of each file

• Files committed and versioned independently

• All versioning and conflict resolution mediated by the server

Main role: efficiently store versions of the same file and coordinate updates to individual files.

UNIX file system is a pretty good match!

8



Centralized Version Control

• Central server holds “canonical” version of each file

• Files committed and versioned independently

• All versioning and conflict resolution mediated by the server

Main role: efficiently store versions of the same file and coordinate updates to individual files.

UNIX file system is a pretty good match!

8



Centralized Version Control Shortcomings…

• Are the set of files in the canonical version collectively valid?

• Not egalitarian: What if we don’t want just one “central” server?

• P2P collaboration, hierarchical, etc…

• What happens if the data on the central server is corrupted?

9



Distributed Version Control

Two important differences from centralized:

1. No inherent “canonical” version

2. Unit of a commit is a complete source code tree

- Each "version" represents a state that _some_ developer intended at _some_
time

- Versioning _files_ is incidental

10



Figure 4: Distributed Version Control

11



Distributed Version Control Workflow Example

Figure 5: &nbsp

12



How would we do this with the UNIX file system?

We need a simple way to succinctly name files, trees, commits, etc such that we can easily compare
them.

13



How would we do this with the UNIX file system?
We need a simple way to succinctly name files, trees, commits, etc such that we can easily compare
them.

13



The Content-based Address

• A succinct summary of the content

• that’s unique for different content

• and the same for the same content

Cryptographic hash functions maps arbitrary size data to a fixed-sized bit-string that is:

• Deterministic

• Computationally “hard” to generate a message that yields a specific hash value

• Computationally “hard” to find two messages with the same hash value

• Similar messages have dissimilar hashes

14



The Content-based Address

• A succinct summary of the content

• that’s unique for different content

• and the same for the same content

Cryptographic hash functions maps arbitrary size data to a fixed-sized bit-string that is:

• Deterministic

• Computationally “hard” to generate a message that yields a specific hash value

• Computationally “hard” to find two messages with the same hash value

• Similar messages have dissimilar hashes

14



The Content-based Address

• A succinct summary of the content

• that’s unique for different content

• and the same for the same content

Cryptographic hash functions maps arbitrary size data to a fixed-sized bit-string that is:

• Deterministic

• Computationally “hard” to generate a message that yields a specific hash value

• Computationally “hard” to find two messages with the same hash value

• Similar messages have dissimilar hashes

14



The Content-based Address

• A succinct summary of the content

• that’s unique for different content

• and the same for the same content

Cryptographic hash functions maps arbitrary size data to a fixed-sized bit-string that is:

• Deterministic

• Computationally “hard” to generate a message that yields a specific hash value

• Computationally “hard” to find two messages with the same hash value

• Similar messages have dissimilar hashes

14



The Content-based Address

• A succinct summary of the content

• that’s unique for different content

• and the same for the same content

Cryptographic hash functions maps arbitrary size data to a fixed-sized bit-string that is:

• Deterministic

• Computationally “hard” to generate a message that yields a specific hash value

• Computationally “hard” to find two messages with the same hash value

• Similar messages have dissimilar hashes

14



Git Internals



Git Layers

Layer Purpose

Object layer Stores objects in a content-addressable store
Tree layer Organizes “blobs” into a directory-like hierarchy
Commit layer Versions the tree layer
Reference layer Provides human-readable names for trees, blobs, commits

Similar to UNIX file system layers, but uses content-based names instead of location-based names.

15



Figure 6: Git’s Layers
16



Object Layer

“Objects” are the basic storage unit in get, similar to blocks in the UNIX file system. All data is
stored as objects.

Names
• The SHA-1 hash of the object’s content: 16-bit string in hex

• aa8074278ed2c4803a2a545f277d1e0afe5039c3

Values
• Blobs: similar to files

• Trees: similar to directories

• Commits: points to tree and previous commit

17



Object Layer

Allocation
• Names “allocated” by taking the hash of the object content

Translation
• Git uses the UNIX file system to store objects on disk

• We need to translate to locations at some point

• Objects stored in a directory .git/objects.

• Filename is the 40-byte hex string of the object’s name

18



Tree Layer

Similar to, and model, directories in the UNIX file system:

Provide hierarchy of trees and blobs that can be traversed using human-meaningful names.

Figure 7: Git tree objects
19



Tree Layer

Names
• Human-readable strings, just like in UNIX directories

Values
• Object name

• Object type

• Permissions (a subset of UNIX permissions)

Allocation
• Names are supplied by the user, just like in UNIX

• Generally, git mirrors an actual directory structure

20



Tree Layer

Translation
• Trees stored as a list of entries, similar to directories

$ git cat-file -p 3914fbcc30ea8092034ca5ea4e6ebd0c887495df
100644 blob 96e87117fc618fc54a770bfc938405a29cca1fbb .gitignore
100644 blob 077b93358fba58cacc6acaf098baa317408aa16e Makefile
100644 blob 7addb405782f208c54f6d31182e173304ee117b9 README.md
040000 tree 303c20a830ce296d625fbf0fe4e4cd99fc33f3b1 http_router
040000 tree 85c17ff71ae5cfafcb1affebc4fbc1e8e67bd23c microblog-client
040000 tree a7dc7cfb0850fbfd4fcdf49310fd2e757cb42c08 microblog-server

21



Commit Layer

The commit layer gives Git a way to express a version history of the source code tree. Commit
objects contains

• A reference to the tree

• Metadata about the tree (the author of this version, when it was “committed”, a message
describing the changes from the previous version, etc…)

• A reference to the previous commit

22



Commit Layer

Names
• “Tree”

• “Parent”

• “Author”

• “Commiter”

• “Commit message”

Values
• Object name of the tree

• Object name of the parent commit

• Author/committer name and e-mail, and date committed

• Message as a string
23



Commit Layer

Allocation
• Names don’t need to be allocated because the are pre-determined

Translation
• Commit objects have a defined format such that each name has a particular location in the
object

24



Reference Layer

Commits, trees, and blobs names not convenient for humans.

• Can’t remember hashes

• Not useful for discovery

• Need some point of synchronization

• e.g., how do we know which is the most recent commit?

References provide global, human readable names for objects

25



Reference Layer

Names
• Human readable names: e.g. “master”, “alevy/wip”, “HEAD”, etc

Values
• A commit name

26



Reference Layer

Allocation
• Reference names are assigned and managed by users

• Some standard reference names by convention:

• master: refers to the most recent “canonical” version of the source code

• HEAD: refers to the most recently committed tree on the local repository

• origin/*: refers to a reference on the “origin” repository, where this repository was cloned from

Translation
• Stored as UNIX files in a special subdirectory of the .git directory

• Each reference is a file containing the name of the object they refer to

27



Figure 8: &nbsp
28



Takeaways from Naming



Naming Scheme Properties

• Names

• Values

• Allocation

• Translation

29



Naming design trade-offs

• Location based names

• Content based names

30



Economy of mechanism

Both systems we looked at reuse mechanisms where possible

• UNIX file system

• Stores everything in blocks: inodes, file data, file system metadata

• Reuses inodes for files and directories

• Git

• Stores everything in objects: blobs, trees, commits

31



Up next

• Problem set due tomorrow

• Assignment 2 due on Tuesday

• Prof. Rexford to talk about naming in networking

• Wednesday we’ll continue on to caching!

32



References

33


	Version Control Overview
	Git Internals
	Takeaways from Naming

