
Introduction to Naming

COS 316 Lecture 5

Amit Levy

1



Examples of Names

www.princeton.edu hostname
aalevy@cs.princeton.edu email
r1 ARM register name
main procedure name
http://www.princeton.edu/news URL
(609) 258-3000 phone number
140.180.223.42 IP address

Systems maniplute and manage resources either by value or by name

• (but values are also usually just names at a lower level)

2



Why use names?

3



Why use names?

• Sharing

• Retrieval

• User friendly

• Hiding

• Indirection

4



Choosing a naming scheme is often the first step in designing a system

5



Naming Schemes Components

• Set of all possible names (i.e. the namespace)

• Set of all possible values

• Allocation algorithm: creates a new mapping

• Translation algorithm: translates a name to a value

6



Example Naming Scheme: UNIX Pipes

Names
• (PID, non-negative integer)

• i.e. names are local to each process

• Shared with other file descriptors

Values
• (in-kernel buffer, in/out?)

• Buffer needs to have associated datat structures (e.g. semaphore, cursor index, etc)

7



Example Naming Scheme: UNIX Pipes

Allocation
Invariant: keep track of max file descriptor per process

int pipe(int pipefd[2])

1. Allocate an in-kernel buffer: newbuf = new_kernel_pipe(...);

2. Increment max file descriptor by 2 and use:

(𝑃𝐼𝐷, 𝑛𝑒𝑤𝑚𝑎𝑥𝑓𝑑 − 1) ∶ (𝑛𝑒𝑤𝑏𝑢𝑓, 𝑖𝑛) (𝑃𝐼𝐷, 𝑛𝑒𝑤𝑚𝑎𝑥𝑓𝑑) ∶ (𝑛𝑒𝑤𝑏𝑢𝑓, 𝑜𝑢𝑡)

8



Example Naming Scheme: UNIX Pipes

Allocation
Invariant: keep track of max file descriptor per process

int dup(int oldfd)

1. Increment max file descriptor by 1 and use:

(𝑃𝐼𝐷, 𝑛𝑒𝑤𝑚𝑎𝑥𝑓𝑑) ∶ 𝑟𝑒𝑠𝑜𝑙𝑣𝑒(𝑃𝐼𝐷, 𝑜𝑙𝑑𝑓𝑑)

Alternative?

(𝑃 𝐼𝐷, 𝑛𝑒𝑤𝑚𝑎𝑥𝑓𝑑) ∶ (𝜆 → 𝑟𝑒𝑠𝑜𝑙𝑣𝑒(𝑃𝐼𝐷, 𝑜𝑙𝑑𝑓𝑑))

9



Example Naming Scheme: UNIX Pipes

Allocation
Invariant: keep track of max file descriptor per process

int dup(int oldfd)

1. Increment max file descriptor by 1 and use:

(𝑃𝐼𝐷, 𝑛𝑒𝑤𝑚𝑎𝑥𝑓𝑑) ∶ 𝑟𝑒𝑠𝑜𝑙𝑣𝑒(𝑃𝐼𝐷, 𝑜𝑙𝑑𝑓𝑑)
Alternative?

(𝑃 𝐼𝐷, 𝑛𝑒𝑤𝑚𝑎𝑥𝑓𝑑) ∶ (𝜆 → 𝑟𝑒𝑠𝑜𝑙𝑣𝑒(𝑃𝐼𝐷, 𝑜𝑙𝑑𝑓𝑑))

9



Example Naming Scheme: UNIX Pipes

Allocation
Invariant: keep track of max file descriptor per process

int dup(int oldfd)

1. Increment max file descriptor by 1 and use:

(𝑃𝐼𝐷, 𝑛𝑒𝑤𝑚𝑎𝑥𝑓𝑑) ∶ 𝑟𝑒𝑠𝑜𝑙𝑣𝑒(𝑃𝐼𝐷, 𝑜𝑙𝑑𝑓𝑑)
Alternative?

(𝑃𝐼𝐷, 𝑛𝑒𝑤𝑚𝑎𝑥𝑓𝑑) ∶ (𝜆 → 𝑟𝑒𝑠𝑜𝑙𝑣𝑒(𝑃𝐼𝐷, 𝑜𝑙𝑑𝑓𝑑))

9



Example Naming Scheme: UNIX Pipes

Translation
Maintain a table per process

FD Pipe

3 (buf1, in)
4 (buf1, out)
5 (buf1, in)
12 (buf2, out)

10



Virtual Memory

Disk

RAM

Another
process's
memory

Virtual memory
(per process)

Physical
memory

Figure 1: Virtual Memory

11



What does virtual memory give us?

• Isolation

• Flexibility in memory management

• E.g. defragment memory dynamically

• Overprovisioning

• Abstraction over storage media

12



What does virtual memory give us?

• Isolation

• Flexibility in memory management

• E.g. defragment memory dynamically

• Overprovisioning

• Abstraction over storage media

12



Virtual Memory as a Naming Scheme

• Names?

• Values?

• Allocation?

• Translation?

13



Virtual Memory: Names

Pointer-sized (e.g. 32-bit or 64-bit) addresses and process identifiers

(𝑃 𝐼𝐷, 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑎𝑑𝑑𝑟𝑒𝑠𝑠)

e.g.

(3487, 0𝑥𝑑𝑒𝑎𝑑𝑏𝑒𝑒𝑓)

14



Virtual Memory: Names

Pointer-sized (e.g. 32-bit or 64-bit) addresses and process identifiers

(𝑃𝐼𝐷, 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑎𝑑𝑑𝑟𝑒𝑠𝑠)

e.g.

(3487, 0𝑥𝑑𝑒𝑎𝑑𝑏𝑒𝑒𝑓)

14



Virtual Memory: Values

Could be any of:

• Physical memory address (i.e. 32-bit or 64-bit address up to size of RAM)

• On-disk file and offset in file

• Some hardware registers (e.g. a network card configuration registers)

• Remote memory

15



Virtual Memory: Values

Could be any of:

• Physical memory address (i.e. 32-bit or 64-bit address up to size of RAM)

• On-disk file and offset in file

• Some hardware registers (e.g. a network card configuration registers)

• Remote memory

15



Virtual Memory: Allocation

int sbrk(intptr_t increment)

• Name is given by user—each 4KB “page” of virtual memory between old break and new break

• For values, keep a free list of physical 4KB memory pages

• Add mapping to “page table”—a data structure understood by the virtual memory hardware
that maps virtual addresses to physical addresses

16



Virtual Memory: Allocation

int sbrk(intptr_t increment)

• Name is given by user—each 4KB “page” of virtual memory between old break and new break

• For values, keep a free list of physical 4KB memory pages

• Add mapping to “page table”—a data structure understood by the virtual memory hardware
that maps virtual addresses to physical addresses

16



Virtual Memory: Translation

08162431 15 723

...
...

...
...

...
...

4
K

 m
e
m

o
ry

 p
a
g
e

10

32*

1210

Linear address:

page directory

32 bit PD
entry

CR3

*) 32 bits aligned to a 4-KByte boundary

page table

32 bit PT
entry

Figure 2: Two-level page table structure in x86

17



Virtual Memory: Translation

08162431 15 723

...
...

...
...

...
...

4
K

 m
e
m

o
ry

 p
a
g
e

10

32*

1210

Linear address:

page directory

32 bit PD
entry

CR3

*) 32 bits aligned to a 4-KByte boundary

page table

32 bit PT
entry

Figure 2: Two-level page table structure in x86

17



Virtual Memory: Translation

page table

disk

TLB

TLB write

TLB hit

TLB miss

page table
hit

page not
present

page table write

virtual address physical address

Figure 3: Virtual-to-physical translation

18



Virtual Memory: Translation

For this to work, the OS needs to do some housework when context switching:

• Set CR3 register to point to process’s page table

• Invalidate the TLB

• Mark entire TLB as invalid—simple but can cause unnecessary slow down

• Associate process IDs with each TLB entry

19



Virtual Memory: Alternative naming schemes

• Segmentation

• Coarser grain

• Single shared address space (identity mapping)

• Still protect with hardware, better performance but less flexibility

• Swap out all memory for one process at a time (original UNIX)

• Language-based memory isolation - runtime maps variables to physical address

• Generally slower to translate compared to hardware paging

20



Takwaways: Virtual Memory

• Naming scheme influences:

• Performance

• Resource allocation flexibility

• Isolation

• Going from design to practical implementation can take a long time

21



Rest of this section

1. Two types of file systems:

- The UNIX file system

- Content addressable storage: Git

2. Naming in Networking (Prof. Rexford)

Assignment 2
An HTTP request routing library.

Why? URL paths name resources (pages, form handlers, etc) on a web server.

22


	Why use names?
	Choosing a naming scheme is often the first step in designing a system

