Introduction to Operating Systems

COS 316 Lecture 4

Amit Levy

What is an Operating System?

What is an Operating System?

operating system
[aparadiNG sistam/

noun

1. software that manages a computer’s resources for users and their
applications [1]

2. provides applications with perfomant, safe and flexible access to
hardware and software services

What is an Operating System?

- Naming - storage, devices, applications, users

- Caching - file caching, memory heirarchy, name translation
- Resource Management - shared network interfaces

- Virtualization - processes, virtual machines, device drivers

- Access Control - users, capabilities

Naming: IPC with UNIX Pipe vs
Binder

Inter-Process Communication (IPC)

- Applications want to talk to each other

- Why? Decouple responsibilities

- IPC an specific mechanism tailored for applications on same
computer

- Simple abstraction: send messages from one application to another

- Key question: how do we name other applications?

UNIX Pipes (a caricature)

- Parent process passes file descriptors to each child

- Parent process knows the “name” of each end points process (just a PID)

- Pipe file descriptors are local names
- Afile descriptor is just a 32-bit number

- Different namespace for each process

$ cat grades.csv |
cut -d "," --output-delimeter="\t" -f 2,3,4 |
awk '$1 == assignmentl' | tee grades_assignment_1.tsv

Binder (a caricature)

- Android’s IPC mechanism

- See also dbus, Windows COM

- Applications expose services with unique global name

- eg edu.princeton.cos316.GradeService

- Client applications can bind to services through special system calls

sp<IBinder> binder =
defaultServiceManager()
->getService("edu.princeton.cos316.GradeService");
ASSERT(binder !'= 0);
sp<IGradeService> gs =
interface_cast<IGradeService>(binder);
ASSERT(gs != 0);
Grade grades[] = gs.get_assignmentl_grades();
do_stuff_with_grades(grades);

Revision: Unix Pipes vs Binder

Unix Pipes Android Binder

Namespace

Discovery

Thought Experiment 2: Unix Pipes vs Binder

Our application:

- Parses the grades database and finds all grades for a particular
assignment

Need to output the result somewhere. Let the user choose!
- File on local machine or NFS, or cloud store
- Another application that processes the data further

How would we implement this with pipes? With Binder? Which is better?

Thought Experiment 2: Unix Pipes vs Binder

Our application:

- Parses the grades database and finds all grades for a particular
assignment

Want to ensure output only to secure cloud storage, e.g. Dropbox folder
accessible only to instructors.

How would we implement this with pipes? With Binder? Which is better?

Takeaway: Naming in Operating Systems

Choices of resource names impacts: discoverability, performance, flexibility,
security.

Caching: Rethink the Sync

Reading and writing durably to disk is very expensive:
- ~10ms on a HDD, ~0.1 on a SSD

- Compare with 100ns for main memory

Caching: Rethink the Sync

Reading and writing durably to disk is very expensive:
- ~10ms on a HDD, ~0.1 on a SSD
- Compare with 100ns for main memory

FILE *out = fopen("squares.txt", "a");
for (int 1 = 0; 1 < 100; i++) {

fprintf(out, "%d: %f\n", pow((double)i, 2.0));
}

How long does this take on a HDD? on a SSD? in a tmpfs (in memory)?

Asyncrhonous File System Semantics

Many OSs combat latency by caching 1/O in memory and flushing to disk

asynchronously

System Cache

Pracess3

Address Space
Process 2

Address Space ‘
Process 1

Address Space

Figure 1: File Caching ([2])

How long with a buffer cache?

FILE *out = fopen("squares.txt", "a");
for (int 1 = 0; 1 < 100; i++) {
fprintf(out, "%d: %f\n", pow((double)i, 2.0));

Trading Durability for Performance

for (int i = 0; i < 100; i++) {
fprintf(out, "%d: %f\n", pow((double)i, 2.0));
printf("Finished %d of 100\n", i);

}

$./myprogram
Finished 1 of 100
Finished 2 of 100

Finished 97 of 100
-- computer loses power here -- 15

Trading Durability for Performance

sync() and fsync() guarantee durability again

FILE *out = fopen("squares.txt", "a");

for (int 1 = 0; 1 < 100; i++) {
fprintf(out, "%d: %f\n", pow((double)i, 2.0));
sync();
printf("Finished %d of 100\n", 1i);

Trading Durability for Performance

sync() and fsync() guarantee durability again

FILE *out = fopen("squares.txt", "a");

for (int 1 = 0; 1 < 100; i++) {
fprintf(out, "%d: %f\n", pow((double)i, 2.0));
sync();
printf("Finished %d of 100\n", 1i);

}

But... performance suffers: 10ms to run on my laptop

Getting the best of both worlds: Rethink the Sync

Rethink the Sync

Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason Flinn
Depariment of Elecirical Engineering and Computer Science
University of Michigan

Abstract

We introduce exteral synchrony. a new model for local
file VO that provides the reliability and simplicity of syn-
chronous /O, yet also closely approximates the perfor-
mance of asynchronous /0. Anexternal observer cannot
distinguish the output of a computer with an externally
synchronous file system from the output of a computer
with a synchronous file system. No application modifi-
cation is required to use an externally synchronous file
system: in fact, application developers can program 1o
the simpler synchronous 10 abstraction and still receive

an asynchronous file system does not block
the calling application, so modifications are typically
committed to disk long after the call completes. This
is fast but not safe. Users view output that depends
on uneommitted modifications. If the system crashes or

loses power before those modifications commit, the out-
put observed by the user was invalid. Asynchronous /O
also complicates applications that require durability or
ordering guarantees. Programmers must inserl explicit
synchronization operations such as fsyne to enforce the
guanantees required by their applications. They must
complex group commit strategies

excellent e. We ha an exter-
nally synchronous file system for Linux, called xsynefs.
Xsynefs provides the same durability and ordering guar-

to achieve reasonable performance. Despite the poor
guarantees provided to users and progrimmers, most lo-

Figure 2: Rethink the Sync, OSDI 2006

Rethink the Sync

Key Idea: Only flush to disk on externalizable events.

Externalizable: someone outside the process can see it happened.

Rethink the Sync

Key Idea: Only flush to disk on externalizable events.
Externalizable: someone outside the process can see it happened.

for (int 1 = 0; i < 100; i++) {
fprintf(out, "%d: %f\n", pow((double)i, 2.0));
// not "externalized"

}

Can flush asynchronously

Rethink the Sync

Key Idea: Only flush to disk on externalizable events.
Externalizable: someone outside the process can see it happened.

for (int i = 0; i < 100; i++) {
fprintf(out, "%d: %f\n", pow((double)i, 2.0));
printf("Finished %d of 100\n", i);

}

Have to flush on every write

Rethink the Sync

Key Idea: Only flush to disk on externalizable events.
Externalizable: someone outside the process can see it happened.

for (int i = 0; i < 100; i++) {
fprintf(out, "%d: %f\n", pow((double)i, 2.0));

}
printf("Finished %d of 100\n", i);

Only have to flush at the end of the loop

20

Rethink “Rethink the Sync”

Why not leave caching to applications?

21

Takeaway: Caching in operating systems

Caching used ubiquitously to mask performance bottlenecks. Choosing
how and where to apply caching can impact performance, durability,
correctness, security, flexibility...

22

Up Next

Assignment 1
- Due TOMORROW @ 11pm

Next Time: Naming

23

References

[1] Anderson, T. and Dahlin, M. Operating Systems: Principles & Practice.

[2] https://docs.microsoft.com/en-us/windows/win32/fileio/file-caching.

24

https://docs.microsoft.com/en-us/windows/win32/fileio/file-caching

	Naming: IPC with UNIX Pipe vs Binder

