Introduction to Distributed Systems & Databases

COS 316 Lecture 2

Amit Levy




Course Administrativia



Warning #1: This is a new course



Warning #2: System Building is nt just Programming

- COS126 & 217 told you how to design & structure your programs.
- This class doesn't.
- If your system is designed poorly it can be much harder to get right!

- Converseley, assignments won't require algorithms or data structures you're not already

familiar with.
- 4xx systems classes require both!
- Your friends:
- Working in teams (don't worry, you're required to)
- Discussing potential solutions before implementing

- Test-driven development ,



Learning Objectives: Skills

- Go programming language, and “Systems” programming
- Version control with git

- Working in groups

- “Systems programming”:

- sockets programming, concurrency, modular design, unit testing, performance measurement...



Learning Objectives: System Design Princeiples

- What is the field of systems?
- Learn to appreciate the trade-offs in designing and building the systems you use.
- Get better at understanding how systems work.

- Learn to use systems better—write more efficient/secure/robust/etc applications.

- 4 major themes:
1. Naming (weeks 3 & 4)
2. Caching (weeks 5 & 6)
3. Resource Management (weeks 7 & 8)
4. Virtualization (weeks 9 & 10)

5. Access Control (weeks 11 & 12) P



Lectures

- Each two week unit explores a different cross-cutting theme

- Each two week unit will use one or two systems to explore the theme



- 50% Programming assignments — due every other week
- 10% Problem sets - every other week

- 10% Dean’s day written project

-+ 30% Two Midterms

- Occassional readings



Assignments: We're building a web framework

Each of the assignments has you building a component of a web framework.



Assignments: We're building a web framework

Each of the assignments has you building a component of a web framework.
A web framework is a set of libraries and tools for building complex web applications:
- Abstracts connection and protocol handling
- Routes requests to controllers/handlers
-+ Caching for common queries and computations
- Multiplexes concurrent access to databases
- Translates database objects into programming language constructs

- User authentication and authorization



Assignments: We're building a web framework

Each of the assignments has you building a component of a web framework.
A web framework is a set of libraries and tools for building complex web applications:
- Abstracts connection and protocol handling
- Routes requests to controllers/handlers
-+ Caching for common queries and computations
- Multiplexes concurrent access to databases
- Translates database objects into programming language constructs
- User authentication and authorization

Examples: Rails, Django, Express, Apache Struts, Laravel



: Collaboration & Resources This slide is really important

- You can, and should use any resources available on the Internet to complete assignments:
- Go documentation, Stackoverflow, open source projects
- Mailing lists, chat rooms, etc...
- Cite sources in your comments or README!

- You must collaborate (in groups of 2)

- You may not ask instructors for help debugging your code.

- Githgan’sistand Game of Thrones rule:

- If you discuss the assignment with other teams, do something else for an hour before returning
to your code.



Assignmen

- Submitting happens whenever you “push” to your “master” branch on GitHub
- You can push as many times as you'd like (I encourage you to do so often)
- Grading is automatic and immediate
- There is no penalty for multiple submissions. We will use your highest graded submission

- Each automatic grading is posted as a comment to the last commit of each push. It includes a
break down of tests cases, including which failed.

- Late days:
- 7 days total for the semester

- Assigned retroactively to give you the best possible overall grade



Late days example

1. Parker submits assignment #1 on time, but can't figure out how to pass the last test case.

Their grade so far for the assignment is 95%.

2. 4 days after the deadline, Parker figures out how to pass the last test and submits late, getting
100%.

3. Months later... Parker underestimates their workload and isn't able to submit assignment 4

until 4 days after the deadline, but passes all tests to get 100%.



Late days example

1. Parker submits assignment #1 on time, but can't figure out how to pass the last test case.

Their grade so far for the assignment is 95%.

2. 4 days after the deadline, Parker figures out how to pass the last test and submits late, getting
100%.

3. Months later... Parker underestimates their workload and isn't able to submit assignment 4

until 4 days after the deadline, but passes all tests to get 100%.

4. We assign the late days to assignment 4, so that Parker’s grade is 90% + 100%, as opposed to
90% + 0%.



Questions?




Preview of Distributed Systems




What is a distributed system?

More than one computer working together to solve a “systems” problem, e.g.:
- Storage and delivery
- Computation
- Coordination or agreement

Examples:

- MapReduce - run computations over very large data sets



What is a distributed system?

More than one computer working together to solve a “systems” problem, e.g.:
- Storage and delivery
- Computation
- Coordination or agreement
Examples:
- MapReduce - run computations over very large data sets

- Content Distribution Network (CDN) - delivers web pages close to users



What is a distributed system?

More than one computer working together to solve a “systems” problem, e.g.:
- Storage and delivery
- Computation
- Coordination or agreement
Examples:
- MapReduce - run computations over very large data sets
- Content Distribution Network (CDN) - delivers web pages close to users

- Paxos (or VSR, or Raft) - Coordinate “consensus” on failure resiliant decisions



What is a distributed system?

More than one computer working together to solve a “systems” problem, e.g.:
- Storage and delivery
- Computation
- Coordination or agreement
Examples:
- MapReduce - run computations over very large data sets
- Content Distribution Network (CDN) - delivers web pages close to users
- Paxos (or VSR, or Raft) - Coordinate “consensus” on failure resiliant decisions

- BitCoin - coordinate the mass consumption of fossil fuels to gain currency with no real value

and tenuous economic value



Synthesize: When do we need systems with more than one computer?

L5 of comptaIT
"/CLU\\\'\ ‘\'o W

VAP € shrrag * Mw)
Wobiph grofle e Sae comac


Amit

Amit

Amit

Amit


hesize: When do we need systems with more than one computer?

- Fault tolerance
- Not enough resources on a single machine
- Accomplish something faster

- Alleviate stress from scarce resource



Consistent Hashing with Chord




Problem statement

We want to store more data than can fit on a single machine... or even a single data center... Or we

want to use end-user run computers...



Problem statement

We want to store more data than can fit on a single machine... or even a single data center... Or we

want to use end-user run computers...

The year is 2000...
- Radiohead release Kid A, their first top-20 record
- The dot-com bubble bursts

- Napster is being sued and might shut down



Problem statement

We want to store more data than can fit on a single machine... or even a single data center... Or we

want to use end-user run computers...

The year is 2000...
- Radiohead release Kid A, their first top-20 record
- The dot-com bubble bursts
- Napster is being sued and might shut down

We want a system with no central coordination that can store lots of data, easily accessible by

anyone.



Chord: A Scalable Peer-to-peer Lookup Protocol
for Internet Applications

Ton Stoica, Robert Morris?, David Liben-Nowell!, David R. Karger, M. Frans Kaashoek?, Frank Dabek?,
Hari Balakrishnan?

Abstract—

A fundamental problem that confronts peer-to-peer applications is the
dficient location of the node that stores a desired data item. This paper
presents Chord, a distributed lookup protocol that addresses this proben.
Chord provides support for just one operation: given a key, it maps the
key onto a node. Data location can be casily implemented on top of Chord
by associating a key with cach data item, and storing the key/data pair at
e node o which the key maps. Chord adupts dlficiently s nodes join
and leave the system, and can answer queries even if the system is contin-
uously changing. Results from theoretical analysis and simulations show
that Chord is scalable: communication cost and the state maintained by
each node scale logarithmically with the number of Chord nodes,

tem.

A Chord node requires information about Of{log N') other
nodes for efficient routing, but performance degrades gracefully
when that information is out of date. This is important in prac-
tice because nodes will join and leave arbitrarily, and consis-
tency of even Oflog N') state may be hard to maintain. Only one
picee of information per node need be correctin order for Chord
Lo guarantee correct (though possibly slow) routing of queries;
Chord has a simple algorithm for maintaining this information

in g dvnamic enviconment




S tl ) =3

Z)
wd@ 3 | MmN



Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit


Solution? Consistent Hashing

- A hash function that maps keys to bins consiiently despite changes in topology.

b
>
- Example: Ring Hashing /) = 0 /©



Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit


How much information to do a lookup?

If N nodes in the ring?

o(N)


Amit


Is this reasonable?

What if N is in the millions?
- Storage?
- Discovery?

- Churn?



Solution: Trade Lookups for Local Storage

- Each Chord node keeps track of k other “finger” nodes:
- finger[k] = NodeFor(n + 2¥"'mod2™,1 <= k <= m)

- successor = finger|1]



// ask node n to find the successor of id

def n.find successor(id): F\
if (n < id &5 id <= successor) g{}
Sk
return successor;
else
nx = closest_preceding_node(id);

return n*.find_successor(id);

// search the local table for the highest predecessor of id
def n.closest_preceding_node(id):
for i = m downto 1
if (n < finger[i] && finger[i] < id)
return finger[i];

return n;

20


Amit


Is this reasonable?

- Storage?
- Discovery?

- Churn?

21



Assignment 1 released
- Due 9/24 @ 11pm

Two short readings (posted on the website)
- The Rise of Worse is Better

- Worse is Better is Worse

Next time: Introduction to Security

22



	Course Administrativia
	Warning #1: This is a new course
	Questions?
	Preview of Distributed Systems
	Consistent Hashing with Chord

