
Introduction to Distributed Systems & Databases

COS 316 Lecture 2

Amit Levy

1



Course Administrativia



Warning #1: This is a new course



Warning #2: System Building is nt just Programming

• COS126 & 217 told you how to design & structure your programs.

• This class doesn’t.

• If your system is designed poorly it can be much harder to get right!

• Converseley, assignments won’t require algorithms or data structures you’re not already
familiar with.

• 4xx systems classes require both!

• Your friends:

• Working in teams (don’t worry, you’re required to)

• Discussing potential solutions before implementing

• Test-driven development 2



Learning Objectives: Skills

• Go programming language, and “Systems” programming

• Version control with git

• Working in groups

• “Systems programming”:

• sockets programming, concurrency, modular design, unit testing, performance measurement…

3



Learning Objectives: System Design Princeiples

• What is the field of systems?

• Learn to appreciate the trade-offs in designing and building the systems you use.

• Get better at understanding how systems work.

• Learn to use systems better—write more efficient/secure/robust/etc applications.

• 4 major themes:

1. Naming (weeks 3 & 4)

2. Caching (weeks 5 & 6)

3. Resource Management (weeks 7 & 8)

4. Virtualization (weeks 9 & 10)

5. Access Control (weeks 11 & 12) 4



Lectures

• Each two week unit explores a different cross-cutting theme

• Each two week unit will use one or two systems to explore the theme

5



Workload

• 50% Programming assignments – due every other week

• 10% Problem sets – every other week

• 10% Dean’s day written project

• 30% Two Midterms

• Occassional readings

6



Assignments: We’re building a web framework

Each of the assignments has you building a component of a web framework.

A web framework is a set of libraries and tools for building complex web applications:

• Abstracts connection and protocol handling

• Routes requests to controllers/handlers

• Caching for common queries and computations

• Multiplexes concurrent access to databases

• Translates database objects into programming language constructs

• User authentication and authorization

Examples: Rails, Django, Express, Apache Struts, Laravel

7



Assignments: We’re building a web framework

Each of the assignments has you building a component of a web framework.

A web framework is a set of libraries and tools for building complex web applications:

• Abstracts connection and protocol handling

• Routes requests to controllers/handlers

• Caching for common queries and computations

• Multiplexes concurrent access to databases

• Translates database objects into programming language constructs

• User authentication and authorization

Examples: Rails, Django, Express, Apache Struts, Laravel

7



Assignments: We’re building a web framework

Each of the assignments has you building a component of a web framework.

A web framework is a set of libraries and tools for building complex web applications:

• Abstracts connection and protocol handling

• Routes requests to controllers/handlers

• Caching for common queries and computations

• Multiplexes concurrent access to databases

• Translates database objects into programming language constructs

• User authentication and authorization

Examples: Rails, Django, Express, Apache Struts, Laravel
7



Assignments: Collaboration & Resources This slide is really important

• You can, and should use any resources available on the Internet to complete assignments:

• Go documentation, Stackoverflow, open source projects

• Mailing lists, chat rooms, etc…

• Cite sources in your comments or README!

• You must collaborate (in groups of 2)

• You may not ask instructors for help debugging your code.

• Gilligan’s Island Game of Thrones rule:

• If you discuss the assignment with other teams, do something else for an hour before returning
to your code.

8



Assignments: Submitting & Grading

• Submitting happens whenever you “push” to your “master” branch on GitHub

• You can push as many times as you’d like (I encourage you to do so often)

• Grading is automatic and immediate

• There is no penalty for multiple submissions. We will use your highest graded submission

• Each automatic grading is posted as a comment to the last commit of each push. It includes a
break down of tests cases, including which failed.

• Late days:

• 7 days total for the semester

• Assigned retroactively to give you the best possible overall grade

9



Late days example

1. Parker submits assignment #1 on time, but can’t figure out how to pass the last test case.
Their grade so far for the assignment is 95%.

2. 4 days after the deadline, Parker figures out how to pass the last test and submits late, getting
100%.

3. Months later… Parker underestimates their workload and isn’t able to submit assignment 4
until 4 days after the deadline, but passes all tests to get 100%.

4. We assign the late days to assignment 4, so that Parker’s grade is 90% + 100%, as opposed to
90% + 0%.

10



Late days example

1. Parker submits assignment #1 on time, but can’t figure out how to pass the last test case.
Their grade so far for the assignment is 95%.

2. 4 days after the deadline, Parker figures out how to pass the last test and submits late, getting
100%.

3. Months later… Parker underestimates their workload and isn’t able to submit assignment 4
until 4 days after the deadline, but passes all tests to get 100%.

4. We assign the late days to assignment 4, so that Parker’s grade is 90% + 100%, as opposed to
90% + 0%.

10



Questions?



Preview of Distributed Systems



What is a distributed system?

More than one computer working together to solve a “systems” problem, e.g.:

• Storage and delivery

• Computation

• Coordination or agreement

Examples:

• MapReduce - run computations over very large data sets

• Content Distribution Network (CDN) - delivers web pages close to users

• Paxos (or VSR, or Raft) - Coordinate “consensus” on failure resiliant decisions

• BitCoin - coordinate the mass consumption of fossil fuels to gain currency with no real value
and tenuous economic value

11



What is a distributed system?

More than one computer working together to solve a “systems” problem, e.g.:

• Storage and delivery

• Computation

• Coordination or agreement

Examples:

• MapReduce - run computations over very large data sets

• Content Distribution Network (CDN) - delivers web pages close to users

• Paxos (or VSR, or Raft) - Coordinate “consensus” on failure resiliant decisions

• BitCoin - coordinate the mass consumption of fossil fuels to gain currency with no real value
and tenuous economic value

11



What is a distributed system?

More than one computer working together to solve a “systems” problem, e.g.:

• Storage and delivery

• Computation

• Coordination or agreement

Examples:

• MapReduce - run computations over very large data sets

• Content Distribution Network (CDN) - delivers web pages close to users

• Paxos (or VSR, or Raft) - Coordinate “consensus” on failure resiliant decisions

• BitCoin - coordinate the mass consumption of fossil fuels to gain currency with no real value
and tenuous economic value

11



What is a distributed system?

More than one computer working together to solve a “systems” problem, e.g.:

• Storage and delivery

• Computation

• Coordination or agreement

Examples:

• MapReduce - run computations over very large data sets

• Content Distribution Network (CDN) - delivers web pages close to users

• Paxos (or VSR, or Raft) - Coordinate “consensus” on failure resiliant decisions

• BitCoin - coordinate the mass consumption of fossil fuels to gain currency with no real value
and tenuous economic value 11



Synthesize: When do we need systems with more than one computer?

• Fault tolerance

• Not enough resources on a single machine

• Accomplish something faster

• Alleviate stress from scarce resource

12

Amit

Amit

Amit

Amit



Synthesize: When do we need systems with more than one computer?

• Fault tolerance

• Not enough resources on a single machine

• Accomplish something faster

• Alleviate stress from scarce resource

12



Consistent Hashing with Chord



Problem statement

We want to store more data than can fit on a single machine… or even a single data center… Or we
want to use end-user run computers…

The year is 2000…

• Radiohead release Kid A, their first top-20 record

• The dot-com bubble bursts

• Napster is being sued and might shut down

We want a system with no central coordination that can store lots of data, easily accessible by
anyone.

13



Problem statement

We want to store more data than can fit on a single machine… or even a single data center… Or we
want to use end-user run computers…

The year is 2000…

• Radiohead release Kid A, their first top-20 record

• The dot-com bubble bursts

• Napster is being sued and might shut down

We want a system with no central coordination that can store lots of data, easily accessible by
anyone.

13



Problem statement

We want to store more data than can fit on a single machine… or even a single data center… Or we
want to use end-user run computers…

The year is 2000…

• Radiohead release Kid A, their first top-20 record

• The dot-com bubble bursts

• Napster is being sued and might shut down

We want a system with no central coordination that can store lots of data, easily accessible by
anyone.

13



14



A strawman solution

A basic hash table

15

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit



Solution? Consistent Hashing

• A hash function that maps keys to bins consistently despite changes in topology.

• Example: Ring Hashing

16

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit

Amit



How much information to do a lookup?

If N nodes in the ring?

17

Amit



Is this reasonable?

What if N is in the millions?

• Storage?

• Discovery?

• Churn?

18



Solution: Trade Lookups for Local Storage

• Each Chord node keeps track of k other “finger” nodes:

• 𝑓𝑖𝑛𝑔𝑒𝑟[𝑘] = 𝑁𝑜𝑑𝑒𝐹𝑜𝑟(𝑛 + 2𝑘−1𝑚𝑜𝑑2𝑚, 1 <= 𝑘 <= 𝑚)

• 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 = 𝑓𝑖𝑛𝑔𝑒𝑟[1]

19



// ask node n to find the successor of id
def n.find successor(id):

if (n < id && id <= successor)
return successor;

else
n* = closest_preceding_node(id);
return n*.find_successor(id);

// search the local table for the highest predecessor of id
def n.closest_preceding_node(id):

for i = m downto 1
if (n < finger[i] && finger[i] < id)

return finger[i];
return n;

20

Amit



Is this reasonable?

• Storage?

• Discovery?

• Churn?

21



Up next

Assignment 1 released
• Due 9/24 @ 11pm

Two short readings (posted on the website)
• The Rise of Worse is Better

• Worse is Better is Worse

Next time: Introduction to Security

22


	Course Administrativia
	Warning #1: This is a new course
	Questions?
	Preview of Distributed Systems
	Consistent Hashing with Chord

