¥ C0S226 Precept # 9 - Exercises Fall ‘19

EXERCISE 1: Maximum Flow

Enthusiastic celebration of a sunny day at a prominent northeastern university has resulted in the arrival
at the university's medical clinic of 169 students in need of emergency treatment. Each of the 169
students requires a transfusion of one unit of whole blood. The clinic has supplies of 176 units of whole
blood. The number of units of blood available in each of the four major blood groups and the distribution
of patients among the groups is summarized below.

Blood Type | AB (o) B A Blood Type | AB o A B

Supply | 45 45 34 46 Can donate to | AB any |A AB | B, AB

Demand 50 42 38 39

How should the blood units be distributed such that the maximum number of patients receive blood
units?

A. Formulate the problem as a Max-Flow problem. Show your work by drawing the flow network
corresponding to the above instance of the problem. Mark the source and sink vertices and the
capacities of the directed edges.

B. Show the flow through each edge in the network after applying Ford-Fulkerson. What is the maximum
number of patients that can receive blood units?

C. Find the minimum-cut in the max-flow network. Use the vertices on the sink side of the min-cut to
explain why the demand of some patients can't be met.

EXERCISE 2: A Simplified MSD String Sort

Consider the following MSD code from the lecture slides. This code assumes that all the strings in the
array of equal length.

public static void sort(String[] a)
recycles aux[] array

{
aux = new String[a.length]; < but not count[] array

sort(a, aux, 0, a.length - 1, 0);

private static void sort(String[] a,~String[] aux, int lo, int hi, int d)

if (hi <= 10) return;

int[] count = new int[R+1]; key-indexed counting
for (int i = lo; i <= hi; i++)
count[a[i].charAt(d) + 1]++;
for (int r = 0; r < R; r++)
count[r+1] += count[r];
for (int i = lo; i <= hi; i++)
aux[count[a[i].charAt(d)]++] = a[i];
for (int i = lo; i <= hi; i++)
ali] = aux[i - 1o];
for (int r = 0; r < R; r++) sort R subarrays recursively
sort(a, aux, lo + count[r], To + count[r+1] - 1, d+1);

Modify the code to use an array of queues for key-indexed counting instead of the count and aux arrays.

You are given a template of the code to modify in the next page. You can also use the online version of
the exercise to run and test your code: http://bit.ly/array-of-queues-msd or download the Intelli] project
from the precepts page.

http://bit.ly/array-of-queues-msd

W O NOUVT A~ WNDNPR

A D DD DDDWWWWWWWWWWNNMNNNNNRNNNNRRBRRBRRBRRRBR
OV D WNROUOLOWONOOAOAUDNWNROUOONOANUDNWNMROOWOONOGOULDWNIERO®

private static final int R = 256;

public static void sort(String[] a) {
if (a.length == @) return;
int w = a[@].1length(); // all strings are assumed to be of the same Llength
sort(a, 9, a.length-1, w, 0);

// Sort from a[lo] to a[hi], based on the dth character.
private static void sort(String[] a, int lo, int hi, int w, int d) {
if (hi <= 1o || d >= a[lo].length()) return;

// The queue at bins[r] holds all the strings whose dth character 1is r.
Queue<String>[] bins = (Queue<String>[]) new Queue[R];
for (int r = 0; r < R; r++)

bins[r] = new Queue<String>();

// TODO: Add each string in the range a[lo ... hi] to its correct bin.

// TODO: Use the bins array to distribute the strings
// back to af[lo ... hi] sorted based on the dth character.

// TODO: Recursively apply MSD to sort each bin.

int from = lo;
for (int r = 0; r < R; r++) {
int to = 5

sort(a, from, to, w, d+l);

from += ;

