

## **EXERCISE 1: Seam Carving**

Consider the given 3x4 image and the corresponding energies matrix.

- A <u>Vertical Seam</u> is a path of pixels connected from the top row to the bottom row, where a pixel at column x and row y can only be connected to the pixels (x-1,y+1), (x,y+1) and (x+1,y+1).
- The <u>Seam Energy</u> is the sum of the energies of the pixels in the seam.
- A *Minimum Energy Vertical Seam* is the vertical seam with the minimum energy.

| (15,10,16) | (31,15,19) | (15,10,3)    |
|------------|------------|--------------|
| (5,18,0)   | (80,18,0)  | (120,100,80) |
|            |            |              |
| (35,20,12) | (36,17,13) | (15,10,3)    |
| (5,1,13)   | (13,1,16)  | (120,110,40) |

| 32  | 72  | 45 |
|-----|-----|----|
| 123 | 163 | 75 |
| 32  | 75  | 41 |
| 156 | 161 | 9  |

RGB Values of the 3x4 Image

**Energy Values (Rounded)** 

**A.** Mark the *minimum energy vertical seam* in the given energies matrix. What is the energy of this seam?

| <b>B.</b> In order to find the minimum energy vertical seam, you will have to find the shortest path from any pixel in the top row to any pixel in the bottom row. |            | $\bigcirc$ | $\bigcirc$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|
| Draw the implicit graph which the energies matrix represents. Show all the edges and edge weights.                                                                 | $\bigcirc$ |            |            |
| <b>C.</b> Assume that the image is of size $W \times H$ , what is the                                                                                              |            |            |            |
| order of growth of the running time of finding the minimum energy vertical Seam using <b>Dijkstra's</b> algorithm (use W and H)?                                   |            |            |            |

## **EXERCISE 2: Algorithm Properties**

| For each of the following statements, argue for why it is true or provide a counterexample if it is false.                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>A.</b> Incrementing all the weights of edges in a graph by the same positive constant does not affect the shortest path.                                                               |
| <b>B.</b> <i>Incrementing</i> all the weights of edges in a graph by the same constant does not affect the <i>minimum</i> spanning tree.                                                  |
| <b>C.</b> Multiplying all the weights of edges in a graph by the same positive constant does not affect the shortest path.                                                                |
| <b>D.</b> The path between two vertices in a minimum spanning tree is always a shortest path between the two vertices on the full graph.                                                  |
| <b>E.</b> Prim and Kruskal's algorithm always correctly compute the <i>minimum spanning tree</i> when there are <i>negative edge weights</i> in the graph.                                |
| <b>F.</b> The following algorithm always correctly computes a minimum spanning tree: For every vertex in the graph, pick the incident edge with the minimum weight and add it to the MST. |

## **EXERCISE 3: Dorm Room and Routers**

There are N rooms, each of which needs an internet connection. A room i has internet access if either of the following is true:

- There is a router installed in room i (this costs  $r_i > 0$ ).
- The room i is connected by some fiber path to another room j which itself has internet access (putting down fiber between room i and j costs  $f_{ij} > 0$ ).

The goal of this problem is to determine in which rooms to install a router, and in which pair of rooms to connect together with fiber, so as to minimize the total cost.

Formulate the problem as a *minimum spanning tree* problem, given a graph G = (V, E) with vertices  $V = \{v_1, \ldots, v_n\}$  and the previously mentioned costs,  $r_i$  and  $f_{ij}$ . You may use the below example to test your formulation.



For example, this instance contains 7 dorm rooms and 10 possible connections. The router installation costs are indicated in bold and parentheses; the fiber costs are given on the edges. The optimal solution, which costs 120, installs a router in rooms 1 and 4 (for a cost of 10 + 40) and builds the shown fiber connections.