EXERCISE 1: Shortest Common Ancestor

In a directed graph, a vertex x is an ancestor of v if there exists a (directed) path from v to x. Given two vertices v and w in a rooted directed acyclic graph (DAG), a shortest common ancestor $sca(v, w)$ is a vertex x which:

- is an ancestor to both v and w;
- minimizes the sum of the distances from v to x and w to x (this path, which goes from v to x to w, is the shortest ancestral path between v and w).

A. In the following digraph, find the shortest common ancestor of vertices 1 and 4, and give the sum of the path lengths from these vertices to all common ancestors, and then circle the shortest.

![Graph](image)

B. Describe an algorithm for calculating the shortest common ancestor of two vertices v and w. Your algorithm should run in linear time (proportional to $V + E$).

C. How would your algorithm differ if we are interested in the shortest ancestral path between two sets of vertices A and B instead of two vertices? I.e. between any vertex v in A and any vertex w in B.

In the example, $A = 3, 11$ and $B = 9, 10, 13$. The shortest common ancestor is 5 (between 10 and 11).
Consider the following Breadth-First Search code. What modifications should be made in order for the `hasCycle()` method to return `true` if the graph has a simple cycle and `false` otherwise? Assume that the graph is *connected, undirected* and does not have parallel edges or self-loops.

Def. A *cycle* is a path with at least one edge whose first and last vertices are the same. A *simple cycle* is a cycle with no repeated edges or vertices (except the requisite repetition of the first and last vertices).

```java
1  private static boolean hasCycle(Graph G) {
2      boolean[] marked = new boolean[G.V()];
3      int[] edgeTo = new int[G.V()];
4
5      Queue<Integer> q = new Queue<Integer>();
6      marked[0] = true;
7      q.enqueue(0);
8
9      while (!q.isEmpty()) {
10         int v = q.dequeue(); // v is the current node
11         for (int w : G.adj(v)) { // for every neighbor w of v
12             if (!marked[w]) {
13                 edgeTo[w] = v;
14                 marked[w] = true;
15                 q.enqueue(w);
16             } 
17         }
18     }
19 }
```

B. What is the order of growth of the running time of this algorithm (as a function of V and E) in the *best case?* What is the order of growth in the *worst case?*
A. Consider the graph G given below and the marked vertex s. Show in the given box what the output would be if `depthFirstSearch` is called on G and s.

```java
private boolean[] marked;

public void depthFirstSearch(Digraph G, int s) {
    marked = new boolean[G.V()];
    dfs(G, s);
}

private void dfs(Digraph G, int v) {
    marked[v] = true;
    StdOut.println("Starting " + v);
    for (int w : G.adj(v)) {
        if (!marked[w])
            dfs(G, w);
    }
    StdOut.println("Finished " + v);
}
```

![Graph Diagram]

B. Consider the following modified version of the `dfs` method. Explain with the simplest counterexample why this code is not a correct cycle detection code.

```java
private void dfs(Digraph G, int v) {
    marked[v] = true;
    for (int w : G.adj(v)) {
        if (!marked[w])
            dfs(G, w);
        else StdOut.print("Cycle found!");
    }
}
```
C. Briefly describe how depth-first search could be modified to detect cycles in a digraph.

D. Fill the blank lines in the following DFS code so that it prints “Cycle found!” if and only if there is a cycle in the graph. Assume that the graph is connected.

```
private boolean[] marked;
private boolean[] onStack;

public void checkCycles(Digraph G, int s) {
    marked = new boolean[G.V()];
    _________________________________
    dfs(G, s);
}

private void dfs(Graph G, int v) {
    marked[v] = true;
    _________________________________
    for (int w : G.adj(v)) {
        if (!marked[w])
            dfs(G, w);
        else if (_______________________)
            StdOut.print("Cycle found!");
    }
}
```