

COS 226 Precept # 7 - Exercises Fall ‘19

EXERCISE 1: Shortest Common Ancestor

In a directed graph, a vertex is an ancestor of if there exists a (directed) path from to . Given two x v v x
vertices and in a rooted directed acyclic graph (DAG), a shortest common ancestor sca(v, w) is a v w
vertex which: x

● is an ancestor to both and ; v w
● minimizes the sum of the distances from to and to (this path, which goes from to v x w x v x

to , is the shortest ancestral path between and). w v w

A. In the following digraph, find the shortest common ancestor of vertices 1 and 4 , and give the sum of
the path lengths from these vertices to all common ancestors, and then circle the shortest.

B. Describe an algorithm for calculating the shortest common ancestor of two vertices and . Your v w
algorithm should run in linear time (proportional to). V + E

C. How would your algorithm differ if we are interested
in the shortest ancestral path between two sets of
vertices and instead of two vertices? I.e. between A B
any vertex in A and any vertex in B. v w

In the example, and . The , 1 A = 3 1 , 0, 3 B = 9 1 1
shortest common ancestor is (between and). 5 0 1 1 1

EXERCISE 2: Cycle Detection Using BFS

Note. You can also use the online version of this exercise, which allows testing your code and receiving
instant feedback:

https://stepik.org/lesson/217879

The online version also has an extra exercise for the bored!

Consider the following Breadth-First Search code. What modifications should be made in order for the
hasCycle() method to return true if the graph has a simple cycle and false otherwise? Assume that
the graph is connected , undirected and does not have parallel edges or self-loops.

Def. A cycle is a path with at least one edge whose first and last vertices are the same. A simple cycle is a
cycle with no repeated edges or vertices (except the requisite repetition of the first and last vertices).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

private static boolean hasCycle (Graph G) {

 boolean [] marked = new boolean[G.V()];

 int [] edgeTo = new int [G.V()];

Queue<Integer> q = new Queue<Integer>();

marked[0] = true ;

q.enqueue(0);

while (!q.isEmpty()) {

int v = q.dequeue(); // v is the current node

for (int w : G.adj(v)) { // for every neighbor w of v

if (!marked[w]) {

edgeTo[w] = v;

marked[w] = true ;

q.enqueue(w);

}

}

 }

}

 B. What is the order of growth of the running time of this algorithm (as a function of and) in the V E
best case ? What is the order of growth in the worst case ?

https://stepik.org/lesson/217879

EXERCISE 3: Detecting Directed Cycles

An online version of this exercise is available at: https://stepik.org/lesson/219467

A. Consider the graph given below and the marked vertex . G s
Show in the given box what the output would be if
depthFirstSearch is called on and . G s

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

private boolean [] marked;

public void depthFirstSearch (Digraph G, int s) {

marked = new boolean [G.V()];

dfs(G, s);

}

private void dfs (Digraph G, int v) {

marked[v] = true ;

StdOut.println("Starting " v);

for (int w : G.adj(v)) {

if (!marked[w])

dfs(G, w);

}

StdOut.println("Finished " + v);

}

B. Consider the following modified version of the dfs method. Explain with the simplest counterexample
why this code is not a correct cycle detection code.

1

2

3

4

5

6

7

8

9

private void dfs (Digraph G, int v) {

marked[v] = true ;

for (int w : G.adj(v)) {

if (!marked[w])

dfs(G, w);

else StdOut.print("Cycle found!");

}

}

https://stepik.org/lesson/219467

C. Briefly describe how depth-first search could be modified to detect cycles in a digraph.

D. Fill the blank lines in the following DFS code so that it prints “Cycle found!” if and only if there is a
cycle in the graph. Assume that the graph is connected.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

private boolean [] marked;

private boolean [] onStack;

public void checkCycles (Digraph G, int s) {

marked = new boolean [G.V()];

 dfs (G, s);

}

private void dfs (Graph G, int v) {

marked[v] = true ;

for (int w : G.adj(v)) {

if (!marked[w])

 dfs(G, w);

else if (_______________________)

StdOut.print("Cycle found!");

}

}

