¥ C0S226 Precept # 7 - Exercises Fall ‘19

EXERCISE 1: Shortest Common Ancestor

In a directed graph, a vertex x is an ancestor of v if there exists a (directed) path from v to x. Given two
vertices v and w in a rooted directed acyclic graph (DAG), a shortest common ancestor sca (v, w) isa
vertex x which:
e isan ancestor to both v and w;
minimizes the sum of the distances from v to x and w to x (this path, which goes from v to x
to w, is the shortest ancestral path between v and w).

A. In the following digraph, find the shortest common ancestor of vertices 1 and 4, and give the sum of
the path lengths from these vertices to all common ancestors, and then circle the shortest.

9
O—~O—C———©
O

B. Describe an algorithm for calculating the shortest common ancestor of two vertices v and w. Your
algorithm should run in linear time (proportionalto V + E).

C. How would your algorithm differ if we are interested
in the shortest ancestral path between two sets of
vertices A and B instead of two vertices? |.e. between
any vertex v in A and any vertex w in B.

In the example, A=3,11 and B=9,10,13. The
shortest common ancestor is 5 (between 10 and 11).

EXERCISE 2: Cycle Detection Using BFS

Note. You can also use the online version of this exercise, which allows testing your code and receiving
instant feedback:

https://stepik.org/lesson/217879

The online version also has an extra exercise for the bored!

Consider the following Breadth-First Search code. What modifications should be made in order for the
hasCycle () method to return true if the graph has a simple cycle and false otherwise? Assume that
the graph is connected, undirected and does not have parallel edges or self-loops.

Def. A cycle is a path with at least one edge whose first and last vertices are the same. A simple cycle is a
cycle with no repeated edges or vertices (except the requisite repetition of the first and last vertices).

O 00 N o v A W N

R B P P R R R R R R
W 0 N O U1 DA W N R ©

private static boolean hasCycle(Graph G) {

boolean[] marked = new boolean[G.V()];
int[] edgeTo = new int[G.V()];
Queue<Integer> q = new Queue<Integer>();
marked[@] = true;
g.enqueue(0);
while (!q.isEmpty()) {
int v = g.dequeue(); // v 1s the current node
for (int w : G.adj(v)) { // for every neighbor w of v
if (!marked[w]) {
edgeTo[w] = v;
marked[w] = true;
g.enqueue(w);
}
}
}
}

B. What is the order of growth of the running time of this algorithm (as a function of V and E) in the
best case? What is the order of growth in the worst case?

https://stepik.org/lesson/217879

EXERCISE 3: Detecting Directed Cycles

An online version of this exercise is available at: https://stepik.org/lesson/219467

A. Consider the graph G given below and the marked vertex s.
Show in the given box what the output would be if

depthFirstSearchis calledon G and s.

1 | private boolean[] marked;

2

3 | public void depthFirstSearch(Digraph G, int s) {
4 marked = new boolean[G.V()];

5 dfs(G, s);

6|}

7

8 | private void dfs(Digraph G, int v) {

9 marked[v] = true;

10 StdOut.println("Starting " v);
11 for (int w : G.adj(v)) {

12 if (!marked[w])

13 dfs(G, w);

14 }

15 StdOut.println("Finished " + v);
16 | }

B. Consider the following modified version of the dfs method. Explain with the simplest counterexample
why this code is not a correct cycle detection code.

private void dfs(Digraph G, int v) {
marked[v] = true;

for (int w : G.adj(v)) {
if (!marked[w])
dfs(G, w);
else StdOut.print("Cycle found!");

W O NGOV, WNR

https://stepik.org/lesson/219467

C. Briefly describe how depth-first search could be modified to detect cycles in a digraph.

D. Fill the blank lines in the following DFS code so that it prints “Cycle found!” if and only if there is a
cycle in the graph. Assume that the graph is connected.

1 | private boolean[] marked;

2 | private boolean[] onStack;

3

4 | public void checkCycles(Digraph G, int s) {

5 marked = new boolean[G.V()];

6

7 dfs(G, s);

8|}

9
10 | private void dfs(Graph G, int v) {
11 marked[v] = true;
12
13 for (int w : G.adj(v)) {
14 if (!marked[w])
15 dfs(G, w);
16 else if ()
17 StdOut.print("Cycle found!");
18 }
19
20 |}

