¥ C0S226

Precept # 6 - Exercises

Fall 19

EXERCISE 1: Sorting

The leftmost column contains an array of 24 integers to be sorted; the rightmost column contains the
integers in sorted order; the other columns are the contents of the array at some intermediate step
during one of the five sorting algorithms listed below. Match each algorithm by writing its number in the
box under the corresponding column. Use each number once.

63
21
19
32
45
60
31
79
48
|
71
88
29
99
89
44
86
52
92
50
25
67
93
81

44
21
19
32
45
60
31
25
48
i |
50
52
29
63
89
99
86
88
92
i |
79
67
93
81

11
19
21
25
29
31
32
44
45
48
50
52
63
99
89
79
86
88
92
71
60
67
93
81

19
21
32
45
60
63
11
31
48
71
79
88
29
99
89
44
86
52
2P
50
25
67
93
81

11
19
21
29
31
32
44
45
48
60
63
if
79
88
89
99
86
52
2
50
25
67
93
81

(@) Original array.
(1) Selection sort.

(2) Insertion Sort.

(3) Mergesort.
(4) Heapsort.

(5) Quicksort (standard, no shuffle) .

(6) Sorted.

81 11
79 19
63 21
60 25
71 29
28 31
48 32
45 44
52 45
50 48
67 50
21 52
25 60
31 63
19 67
49 g !
11 79
32 81
86 86
88 88
89 89
92 92
93 93
99 99
6




EXERCISE 2: Hashing & Binary Search Trees
Consider the following Symbol Table operation:

equals (Object other): Check if this symbol table has exactly the same keys as other,
regardless of the order of the keys and the values they map to.

For each of the following implementations, give the order of growth of the best- and worst-case running
times in symbol tables containing n key-value pairs each. Briefly describe the algorithm of each
operation.

Algorithm Best case Worst case

Binary Search
Tree

Red-Black Binary
Search Tree

Hash Table
with Chaining
(assuming
uniform hashing)

Hash Table
with Chaining
(not assuming

uniform hashing)




EXERCISE 3: Data Structure & Algorithm Design

A Point is an object consisting of an x- and a y-coordinate. Your goal is to maintain a collection of Points
that supports the following operations:

e Add a Point to the collection.
e Return the Point with the lowest x-coordinate.

e Return the Point with the lowest y-coordinate.

e Delete the Point with the lowest x-coordinate.
e Delete the Point with the lowest y-coordinate.

If there are multiple Points with the same x- or y-coordinate, you may choose among them arbitrarily.

Performance Requirements:

e Any sequence of n invocations of the supported operations (in any order), starting from an empty
collection, must complete in time proportional to 7 1og 7 in the worst case.

e Returning the Point with the lowest x- or y-coordinate must take constant time.

You may make any standard technical assumptions that we have seen in this course.

(a) Describe the data structures you would use. Specifically, for any new data structures you need, write
the class declaration. For any data structures from lectures/textbook that you would use, succinctly
describe how you would use them and what modifications are needed (if any).



https://www.codecogs.com/eqnedit.php?latex=n%0
https://www.codecogs.com/eqnedit.php?latex=n%5Clog%20n%0
https://www.codecogs.com/eqnedit.php?latex=constant%0

(b) Give a concise English description of your algorithm for adding a Point to the collection. Feel free to
use some pseudocode if you think it will improve clarity.

(c) Give a concise English description of your algorithm for returning the Point with the lowest x- or
y-coordinate. Feel free to use some pseudocode if you think it will improve clarity.

(d) Give a concise English description of your algorithm for deleting the Point with the lowest x- or
y-coordinate. Feel free to use some pseudocode if you think it will improve clarity.




