¥ C0S226 Precept # 5 - Exercises Fall ‘19

EXERCISE 1: Kd-Trees

(@) Draw the Kd-tree that results from inserting the following points:

(a2, 3), B(4, 2), C(4, 5), D(3, 3), E(1, 5), F(4, 4), G(1, 1)]

Draw each point on the grid, as well as the vertical or horizontal line that runs through the point
and partitions the plane, or a subregion of it.

Note: While inserting, go left if the coordinate of the inserted point is less than the coordinate of
the current node. Go right if it is greater than or equal.

A(2,3)

4 B(4,2)
——

A(2, 3) [(—o0, —), (+00, +0)]

F(4, 4) [(4, 2), (+o00, +©)]

E(1, 5) [(—oo, =), (2, +0)]

(c) Number the tree nodes according to the visiting order when performing a range query using the
rectangle shown below. Label pruned subtrees with X.

Remember. The range search algorithm recursively searches in both the left and right subtrees
unless the bounding rectangle of the current node does not intersect the query rectangle.

A(2,3)
‘F E(1,5) B(4,2)
G(1,1) c(4,5)
B'l + +
G| / \
D(3,3) F(4,4)

(d) Number the tree nodes according to the visiting order when performing a nearest neighbor (NN)
query using the point p shown below. Label pruned subtrees with X.

Remember. The NN algorithm recursively searches in both the left and right subtrees unless the
distance between p and the bounding rectangle of the current node is not less than the distance
between p and the nearest point found so far.

| 4 l A
F E(1,5) B(4,2)
4 ' —e— —e—
A D / \
3 i * G(1,1) c(4,5)

2 = + /+\
1 G* D(3,3) F(4,4)

o
S0

EXERCISE 2: Operations on Binary Trees

Consider the following Binary Tree class for storing integers.

1 | public class BinaryTree {

2 private Node root;

3 private class Node {

4 private int key;

5 private Node left, right;

6

7 private int size; // # of nodes in subtree rooted here

8 private int height; // maximum number of Links between the node
9 // and any of its children

10

11 public Node(int key, int size) {
12 this.key = key;

13 this.size = size;
14 }

15 }
16

17 private int size(Node x) { /* returns x.size or @ if x is null. */ }
18 private boolean contains(int key) { /* checks if key is in the tree. */ }
19 // ... other public and private methods
20 |}

(@) Assume that elements in BinaryTree are ordered such that the tree is a Binary Search Tree (BST).
Implement method rank, which returns the number of keys in the BST that are strictly less than the given
key.

public int rank(int key) {
// use the recursive private helper method rank(Key key, Node x)

private int rank(int key, Node x) {

O 00 N O U1 DN W N B
-

P R R R RPRPRLRRPR
O 0N UV WNRO®
—

(b) Assume that BinaryTree is not necessarily a Binary Search Tree. Implement method
isHeapOrdered to check if the tree is heap-ordered as a Max-Heap, i.e. every node in the tree is not less
than its children.

Note. checking if a binary tree is a valid Max-Heap requires also checking if every level is full, except the
last level, which could be partially filled left-to-right. In this exercise check only if the tree is heap-ordered.

1 [private boolean isHeapOrdered(Node x) {
2 if (x == null) return true;
3

4

5

6

7

8

9

10

11

12

13

14 | }

Extra (Optional) Exercises:

(@) Assuming BinaryTree is a BST, implement int rangeCount (int lo, int hi).This method
should return the number of keys in the BST that are between 1o and hi (inclusive).

HINT: Use method rank!

(b) Implement the method boolean alllevelsFull (Node x),which returns true if all levels in the
tree are full.

HINT: This method can be implemented in constant time!

(c) Assuming BinaryTree is a BST, implement method Node select (int k) which returns the node
in the tree with the key of rank .

HINT: See pages 406-409 in the textbook.

(d) Implement the method boolean isComplete (Node x),which returns true if all levels in the tree
are full except the last level, which could be filled from left to right.

HINT: Use Breadth-First Traversal!

