

COS​226 Precept ​#​ 3 ​-​ Exercises Fall ​‘19

EXERCISE 1: Analysis of Sorting Algorithms

Suppose that you have an array of length consisting of B's followed by A's. Below is the arrayn2 n n
when .n = 8

B B B B B B B B A A A A A A A A

(a) How many compares, as a function of , does it take to sort the array in ascending order usingn
Selection Sort​ ? Use tilde notation.

(b) How many compares, as a function of , does it take to sort the array in ascending order usingn
Insertion Sort​ ? Use tilde notation.

(c) How many compares, as a function of , does it take to sort the array in ascending order usingn
Merge Sort​ ? Use tilde notation.

EXERCISE 2: Three-Way Merge Sort

3-way Merge sort is a variant of the Merge sort algorithm that considers 3 “equal” subarrays instead of 2
subarrays.

(a) Given 3 sorted subarrays of size , how many comparisons are needed (in the worst case) to3
n

merge them to a sorted array of size ? Provide your answer in tilde notation.n

(b) What is the ​order of growth​ of the number of compares in 3-way Merge Sort as a function of the
array size ?n

(c) Given a choice, would you choose 3-way or 2-way merge sort? Justify your answer.

OPTIONAL: Algorithm Design ​(​Midterm Spring 2015​)

Let be an array of length . An array is a circular shift of a if it consists of the subarray, a , ... , aa = a0 1 n−1 n b
followed by the subarray for some integer . In the example below, is a, a , ... , aak k+1 n−1 , a , ... , aa0 1 k−1 k b

circular shift of (with and).a k = 7 0n = 1

sorted array a[] circular shift b[]

1 2 3 5 6 8 9 34 55 89 34 55 89 1 2 3 5 6 8 9

Suppose that you are given an array that is a circular shift of some sorted array (but you have access tob
neither nor the sorted array). Assume that the array consists of comparable keys, no two of which arek b n
equal. Design an efficient algorithm to determine whether a given key appears in the array . The order ofb

growth of the running time of your algorithm should be (or better) in the worst case, where is then

length of the array.

https://www.codecogs.com/eqnedit.php?latex=%5Clog%20n%0

ASSIGNMENT TIPS: Autocomplete

(1) Given an array of elements with duplicates, can we use the book implementation of Binary Search to
find the ​first occurrence​ ​of an element?

● The standard implementation of Binary Search finds ​an​ occurrence, which is not necessarily the
first​ occurence.

● Finding the element and then scanning left to find the first occurence yields a linear running
time (in the worst case), which is not good!

● In this assignment, you will have to modify Binary Search to find the first (and last) occurence of
an element in a sorted array in logarithmic time (in the worst case).

● For full credit, your algorithm has to make at most compares. However, if yourlog n⌉ 1 + ⌈ 2

algorithm has a logarithmic order of growth but makes more than compares​, youlog n⌉ 1 + ⌈ 2

will lose ​only​ 1 point.

(2) What is the difference between a ​Comparable​ and a ​Comparator​?

● A ​Comparable<T>​ is an object of a class that has the method ​compareTo(T other)​.
This method allows the object to compare itself to other objects.

● A ​Comparator<T>​ is an object that can be used to compare two given objects. It has the
method ​compare(T obj1, T obj2)​.

● Making an object ​Comparable​ makes it comparable with other objects using the logic
provided in the ​compareTo​ method. However, if we want to implement multiple ways of
comparison (for e.g. compare files by name, date created, date modified, etc.), then we need to
have multiple Comparators.

● A good example of the use of ​Comparable​ and ​Comparator​ is ​Point2D.java​, which is
available at: ​https://algs4.cs.princeton.edu/code/​. You can use this as a guide when working on
the assignment.

● Note that a ​Comparator​ class can have a constructor that takes arguments. This may be
needed in the assignment!

(3) What is the order of growth of the ​substring​ method?

● Creating a substring of length takes time proportional to .r r

● Note that the string comparison functions in the assignment should take time proportional to
the number of characters needed to resolve the comparison.

Example:​ The comparison between ​X=“AAAAAAA”​ and ​Y=“AABBB”​ can be resolved when
the first “B” in Y is reached. The comparison function should ​not​ take time proportional to the
size of X or the size of Y. It should take time proportional to the number of characters needed
to resolve the comparison!

● Most uses of the ​substring​ method in the compare functions do not meet the above time
constraint. So, be careful!

(4) A video that provides some tips for the assignment is available on the assignment Checklist page. The
video was made in 2014, so a few things are outdated, but most of it still useful!

https://algs4.cs.princeton.edu/code/

