¥ C0S226 Precept # 3 - Exercises Fall ‘19

EXERCISE 1: Analysis of Sorting Algorithms

Suppose that you have an array of length 2n consisting of n B's followed by n A's. Below is the array
when n =8.

BBBBBBBBAAAAAAAA

(@) How many compares, as a function of n, does it take to sort the array in ascending order using
Selection Sort ? Use tilde notation.

(b) How many compares, as a function of n, does it take to sort the array in ascending order using
Insertion Sort ? Use tilde notation.

(c) How many compares, as a function of n, does it take to sort the array in ascending order using
Merge Sort ? Use tilde notation.

EXERCISE 2: Three-Way Merge Sort

3-way Merge sort is a variant of the Merge sort algorithm that considers 3 “equal” subarrays instead of 2
subarrays.

(@) Given 3 sorted subarrays of size % , how many comparisons are needed (in the worst case) to
merge them to a sorted array of size n? Provide your answer in tilde notation.

(b) What is the order of growth of the number of compares in 3-way Merge Sort as a function of the
array size n?

(c) Given a choice, would you choose 3-way or 2-way merge sort? Justify your answer.

OPTIONAL: Algorithm Design (Midterm Spring 2015)

Let a = ay, a,, ..., a, ; beanarray of length n.An array b is a circular shift of a if it consists of the subarray
Ay, Ajyys - » 4, followed by the subarray a, a,, ..., a;,_ for some integer k. In the example below, b is a
circular shift of a (with k=7 and n=10).

sorted array a[] circular shift b[]

1123|5689 |34|55]|89 34 {55189 | 1 2 (3 |5|6([8]°9

Suppose that you are given an array b that is a circular shift of some sorted array (but you have access to
neither k nor the sorted array). Assume that the array b consists of n comparable keys, no two of which are
equal. Design an efficient algorithm to determine whether a given key appears in the array b. The order of
growth of the running time of your algorithm should be logn (or better) in the worst case, where n is the
length of the array.

https://www.codecogs.com/eqnedit.php?latex=%5Clog%20n%0

ASSIGNMENT TIPS: Autocomplete

(1) Given an array of elements with duplicates, can we use the book implementation of Binary Search to
find the first occurrence of an element?

The standard implementation of Binary Search finds an occurrence, which is not necessarily the
first occurence.

Finding the element and then scanning left to find the first occurence yields a linear running
time (in the worst case), which is not good!

In this assighnment, you will have to modify Binary Search to find the first (and last) occurence of
an element in a sorted array in logarithmic time (in the worst case).

For full credit, your algorithm has to make at most 1 + rlogzn—l compares. However, if your
algorithm has a logarithmic order of growth but makes more than 1 + rlogziﬂ compares, you
will lose only 1 point.

(2) What is the difference between a Comparable and a Comparator?

A Comparable<T> is an object of a class that has the method compareTo (T other).
This method allows the object to compare itself to other objects.

A Comparator<T>is an object that can be used to compare two given objects. It has the
method compare (T objl, T obj2).

Making an object Comparable makes it comparable with other objects using the logic
provided in the compareTo method. However, if we want to implement multiple ways of
comparison (for e.g. compare files by name, date created, date modified, etc.), then we need to
have multiple Comparators.

A good example of the use of Comparable and Comparator is Point2D. java, which is
available at: https://algs4.cs.princeton.edu/code/. You can use this as a guide when working on
the assignment.

Note that a Comparator class can have a constructor that takes arguments. This may be
needed in the assignment!

(3) What is the order of growth of the substring method?

Creating a substring of length » takes time proportional to .

Note that the string comparison functions in the assignment should take time proportional to
the number of characters needed to resolve the comparison.

Example: The comparison between X="AAAAAAA” and Y="AABBB" can be resolved when
the first “B” in Y is reached. The comparison function should not take time proportional to the
size of X or the size of Y. It should take time proportional to the number of characters needed
to resolve the comparison!

Most uses of the substring method in the compare functions do not meet the above time
constraint. So, be careful!

(4) A video that provides some tips for the assignment is available on the assignment Checklist page. The
video was made in 2014, so a few things are outdated, but most of it still useful!

https://algs4.cs.princeton.edu/code/

