EXERCISE 1: Analysis of Sorting Algorithms

Suppose that you have an array of length $2n$ consisting of n B's followed by n A's. Below is the array when $n = 8$.

B B B B B B B B A A A A A A A A

(a) How many compares, as a function of n, does it take to sort the array in ascending order using Selection Sort? Use tilde notation.

(b) How many compares, as a function of n, does it take to sort the array in ascending order using Insertion Sort? Use tilde notation.

(c) How many compares, as a function of n, does it take to sort the array in ascending order using Merge Sort? Use tilde notation.
EXERCISE 2: Three-Way Merge Sort

3-way Merge sort is a variant of the Merge sort algorithm that considers 3 “equal” subarrays instead of 2 subarrays.

(a) Given 3 sorted subarrays of size $\frac{n}{3}$, how many comparisons are needed (in the worst case) to merge them to a sorted array of size n? Provide your answer in tilde notation.

(b) What is the order of growth of the number of compares in 3-way Merge Sort as a function of the array size n?

(c) Given a choice, would you choose 3-way or 2-way merge sort? Justify your answer.
Let \(a = a_0, a_1, \ldots, a_{n-1} \) be an array of length \(n \). An array \(b \) is a circular shift of \(a \) if it consists of the subarray \(a_k, a_{k+1}, \ldots, a_{n-1} \) followed by the subarray \(a_0, a_1, \ldots, a_{k-1} \) for some integer \(k \). In the example below, \(b \) is a circular shift of \(a \) (with \(k = 7 \) and \(n = 10 \)).

<table>
<thead>
<tr>
<th>sorted array (a[])</th>
<th>circular shift (b[])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 5 6 8 9 34 55 89</td>
<td>34 55 89 1 2 3 5 6 8 9</td>
</tr>
</tbody>
</table>

Suppose that you are given an array \(b \) that is a circular shift of some sorted array (but you have access to neither \(k \) nor the sorted array). Assume that the array \(b \) consists of \(n \) comparable keys, no two of which are equal. Design an efficient algorithm to determine whether a given key appears in the array \(b \). The order of growth of the running time of your algorithm should be \(\log n \) (or better) in the worst case, where \(n \) is the length of the array.
ASSIGNMENT TIPS: Autocomplete

(1) Given an array of elements with duplicates, can we use the book implementation of Binary Search to find the \textit{first occurrence} of an element?

- The standard implementation of Binary Search finds an occurrence, which is not necessarily the \textit{first} occurrence.
- Finding the element and then scanning left to find the first occurrence yields a linear running time (in the worst case), which is not good!
- In this assignment, you will have to modify Binary Search to find the first (and last) occurrence of an element in a sorted array in logarithmic time (in the worst case).
- For full credit, your algorithm has to make at most $1 + \lceil \log_2 n \rceil$ compares. However, if your algorithm has a logarithmic order of growth but makes more than $1 + \lceil \log_2 n \rceil$ compares, you will lose only 1 point.

(2) What is the difference between a \texttt{Comparable} and a \texttt{Comparator}?

- A \texttt{Comparable<T>} is an object of a class that has the method \texttt{compareTo(T other)}. This method allows the object to compare itself to other objects.
- A \texttt{Comparator<T>} is an object that can be used to compare two given objects. It has the method \texttt{compare(T obj1, T obj2)}.
- Making an object \texttt{Comparable} makes it comparable with other objects using the logic provided in the \texttt{compareTo} method. However, if we want to implement multiple ways of comparison (for e.g. compare files by name, date created, date modified, etc.), then we need to have multiple Comparators.
- A good example of the use of \texttt{Comparable} and \texttt{Comparator} is \texttt{Point2D.java}, which is available at: \url{https://algs4.cs.princeton.edu/code/}. You can use this as a guide when working on the assignment.
- Note that a \texttt{Comparator} class can have a constructor that takes arguments. This may be needed in the assignment!

(3) What is the order of growth of the \texttt{substring} method?

- Creating a substring of length \(r \) takes time proportional to \(r \).
- Note that the string comparison functions in the assignment should take time proportional to the number of characters needed to resolve the comparison.

\textit{Example:} The comparison between \texttt{X=“AAAAAAA”} and \texttt{Y=“AABB”} can be resolved when the first \texttt{“B”} in \texttt{Y} is reached. The comparison function should \textit{not} take time proportional to the size of \texttt{X} or the size of \texttt{Y}. It should take time proportional to the number of characters needed to resolve the comparison!
- Most uses of the \texttt{substring} method in the compare functions do not meet the above time constraint. So, be careful!

(4) A video that provides some tips for the assignment is available on the assignment Checklist page. The video was made in 2014, so a few things are outdated, but most of it still useful!