¥ C0S226 Precept # 2 - Exercises Fall ‘19

EXERCISE 1: A Grid Iterator

Download Grid. zip from the precepts page, unzip the project and open it using Intelli).

(@) Implement the GridIterator class in Grid. java to enable iterating over the elements in the grid
in row-major order (as shown below). Test your program by running the given driver program.

£070)—(0-1—(052)—(0:3)—

“(150) (11— (172)(15;3)—

-2

-T2

(0,0) (0)1) (0)2) (0,3)
(1,0) (1,1) (1,2) (1,3)
(2,0) (2,1) (2,2) (2,3)

(3,3) (3,1) (3,2) (3,3)
4 1 i

Row-major

Column-major

(b) Create another iterator ColMajorIterator that returns elements in column-major order. Add code

to main that prints the grid elements using this iterator.

(c) Convert Grid.java to an lterable, where the default iteration is in row-major order. Test your code

by converting the while loop in main to a for-each loop.

(d) Consider the following piece of code, where myGrid is an object of type Grid<Integer>:

1 | boolean flag = true;

2 | for (int i : myGrid) {
3 int count = 0;

4 for (int j : myGrid)
5 if (i == j)

6 count++;

7 if (count > 1) {

8 flag = false;
9 break;

10 }

11 | }

12 | StdOut.println(flag);

What does this code do?

What is the order of growth of the
running time of this code?

How many iterator objects does this
code create?



EXERCISE 2: Memory Analysis

(@) How much memory does each of the following pieces of code use as a function of the input size n?
Use tilde notation to simplify your answer.

(Note: An object of type Double uses 24 bytes of memory, whereas a double variable uses 8 bytes only)

(1)

double[] a = new double[n];

(2)

double[] a = new double[n];

for (int i = 0; i < n; i++)
a[i] = @.5;

(3)

Double’[] a = new Double[n];

(4)
Double[] a = new Double[n];
for (int i = 0; 1 < n; i++)

a[i] = new Double(0.5);

' This example should not be interpreted to mean that creating an array of type Double[] instead of double[] is a good
idea. It is actually a bad idea! Do not use the wrapper type unless you are forced to (like in generics).



(b) Use tilde notation to describe how much memory an object of type Grid<Item> requires as a
function of n right after the constructor finishes execution. Note that the grid is of size n x n.

(c) Use tilde notation to describe how much memory a Grid<Integer> object requires as a function of n,
assuming that there are no null items in the grid. Note that every object of type Integer requires 24
bytes.

(d) Use tilde notation to describe how much memory a GridIterator<Integer> object requires as a
function of n.



