¥ C0S226 Precept # 10 - Exercises Fall ‘19

EXERCISE 1: Compression Warm-up

. ompression ratio is defi as: Sompresedsie ider a sequ ara , 8-bits each,
A. The compression ratio is defined “’—0”,’% Consider a sequence of N characters, 8-bits each

what is the compression ratio achieved by Huffman coding in:

o the best case?
o the worst case?

B. Move-To-Front is a lossless encoding algorithm that works as follows:

Maintain an ordered sequence of the characters in the alphabet by repeatedly reading a character from
the input message; printing the position in the sequence in which that character appears; and moving
that character to the front of the sequence.

Example. Input: BCC
Output: 120
B is 1 C is 2 C is 0
ABCDEF——>BACDEF ——» CBADEF ——3» CBADEF
012345 12345 012345 012345

Assuming the alphabet is A-Z, where A has code 0, B code 1, etc.:

o Encode“AAABBBCCCDDDETEFE".

o Encode“A E ABECAD"

C. Move-To-Front encoding is typically used to convert a given text into one where some characters appear
much more frequently than others. Based on the examples above, when does MoveToFront achieve this

goal well?

D. The goal of the Burrows-Wheeler lossless transform is to convert a given text into text where sequences
of the same character occur near each other many times.

How should Move-To-Front, Huffman and Burrows-Wheeler be used together in order to achieve a good
compression ratio?

https://www.codecogs.com/eqnedit.php?latex=N%0

EXERCISE 2: Burrows-Wheeler Transform

A. List the circular suffixes of the word “W E E KE N D" and then sort them in lexicographical order.

Original Sorted
© [WEEKEND

T|EEKENDW

B. The Burrows-Wheeler transform is the last character of each of the sorted circular suffixes, preceded
by the row number in which the original string ends up when considered in sorted order.

What is the Burrows-Wheeler Transform of “W E E KE N D"?

C. How much memory is needed to store the circular suffixes?

EXERCISE 3: Burrows-Wheeler Inverse-Transform

A. Given only the last character of each of the circular suffixes when considered in sorted order, can we
infer the first character in each of these suffixes? Explain your answer.

NN N N N N
1
1
1
1
1
mmXxXm=2Z2

B. We know from Exercise 2 .B that the Burrows-Wheeler transform stores where the original string is.
The goal of the inverse-transform is to find the characters of the original string, i.e. the characters
between Wand D in row 6.

s[] t[]
8| D - - - - - N
1 E--- - - W
2| E - - - - - E
3| E- - - - - K
Al K = = = - - E
5| N - - - - - E
6| W- - - - - D *

Observation. A circular suffix that ends with a W comes directly after a circular suffix that begins with a
W in the original (un-sorted) circular suffix array. Look at your answer for 2.Al

Use the following (very slow) algorithm to construct the array next [] to keep track of where the next
circular suffix is for each of the sorted circular suffixes.

(N is the number of circular suffixes and used[] is of size R=256 and is initialized to false)

for (int 1 = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
if (used[j]) continue;
if (s[i] == t[j]) {

used[j] = true; // disallow reuse of this character
next[i] = j;
break;
}
}
}
Original S[] t[] next|[]
O (WEEKEND oD ---- - N 6
1T |/EEKENDW 1l - - - - - W
2 |[EKENDWE 2|1E - - - - - E
3 |KENDWEE 3/1E - - - - - K
4 IENDWETEHK 41K - - - - - E
5 NDWETEKE 5/N---- - E
6 [IDWEEKEN 6N - - - - - D

C. Trace the array next [] starting at row 6 to reconstruct the original string.

EXERCISE 4: Algorithm & Data Structure Design

Given a string txt of length N, design an algorithm or a data structure that allows search in txt for a given
string s of length m < N in txt. The length m is unknown in advance and is not fixed over different
queries.

Performance Requirements. The running time of each search query should be in the order of m. Your

solution can use up to N2R space and can take up to N2R of pre-processing time (not at query time),
where R is the size of the alphabet, which is known in advance.

https://www.codecogs.com/eqnedit.php?latex=N%0
https://www.codecogs.com/eqnedit.php?latex=m%0
https://www.codecogs.com/eqnedit.php?latex=N%0
https://www.codecogs.com/eqnedit.php?latex=m%0
https://www.codecogs.com/eqnedit.php?latex=m%0
https://www.codecogs.com/eqnedit.php?latex=N%5E2R%0
https://www.codecogs.com/eqnedit.php?latex=N%5E2R%0

