
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 12/12/19 9:43 AM

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greedy

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomized algorithmshttps://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

2

Algorithm design

Algorithm design patterns.

独Analysis of algorithms.

独Greedy.

独Network flow.

独Dynamic programming.

独Divide-and-conquer.

独Randomized algorithms.

 
 
 
 
 
 
 
 
Want more? See COS 340, COS 343, COS 423, COS 445, COS 451, COS 488, .…

3

Interview questions

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomized algorithms

ALGORITHM DESIGN

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Goal. Find T using fewest number of tosses.

Variant 0. 1 egg.

Variant 1. ∞ eggs.

Variant 2. ∞ eggs and ~ 2 lg T tosses.

Variant 3. 2 eggs.

6

Egg drop

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomized algorithms

ALGORITHM DESIGN

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

13

Greedy algorithms

Make locally optimal choices at each step.

 
Familiar examples.

独Huffman coding.

独Prim’s algorithm.

独Kruskal’s algorithm.

独Dijkstra’s algorithm.

 
More classic examples.

独U.S. coin changing.

独Activity scheduling.

独Gale–Shapley stable marriage.

独...

 
Caveat. Greedy algorithm rarely leads to globally optimal solution.  
(but is often used anyway, especially for intractable problems)

14

Document search

Given a document that is a sequence of n words, and a query that  
is a sequence of m words, find the smallest range in the document 
that includes the m query words (in the same order).

Ex. Query = “textbook programming computer”

This book is intended to survey the most important computer
algorithms in use today, and to teach fundamental techniques
to the growing number of people in need of knowing them. It
is intended for use as a textbook for a second course in
computer science, after students have acquired basic
programming skills and familiarity with computer systems.
The book also may be useful for self-study or as a reference
for people engaged in the development of computer systems or
applications programs, since it contains implementations of
useful algorithms and detailed information on performance
characteristics and clients.

This book is intended to survey the most important computer
algorithms in use today, and to teach fundamental techniques
to the growing number of people in need of knowing them. It
is intended for use as a textbook for a second course in
computer science, after students have acquired basic
programming skills and familiarity with computer systems.
The book also may be useful for self-study or as a reference
for people engaged in the development of computer systems or
applications programs, since it contains implementations of
useful algorithms and detailed information on performance
characteristics and clients.

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomized algorithms

ALGORITHM DESIGN

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

31

Network flow

Classic problems on edge-weighted graphs. 

Familiar examples.

独Shortest paths.

独Bipartite matching.

独Maxflow and mincut.

独Minimum spanning tree. 

Other classic examples.

独Minimum-cost arborescence.

独Non-bipartite matching.

独Assignment problem.

独Minimum-cost flow.

独...

Applications. Many many problems can be modeled using network flow.

“reduction”

32

Shortest path with orange and black edges

Goal. Given a digraph, where each edge has a positive weight and is orange

or black, find shortest path from s to t that uses at most k orange edges.

s

2 3

1G

t

8

21

4 3

9
10

7

k = 0: s→1→t (17)
k = 1: s→3→t (13)
k = 2: s→2→3→t (11)
k = 3: s→2→1→3→t (10)

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomized algorithms

ALGORITHM DESIGN

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

37

Dynamic programming

独Break up problem into a series of overlapping subproblems.

独Build up solutions to larger and larger subproblems. 
(caching solutions to subproblems in a table for later reuse)  

Familiar examples.

独Shortest paths in DAGs.

独Seam carving.

独Bellman–Ford.

 
More classic examples.

独Unix diff.

独Viterbi algorithm for hidden Markov models.

独Smith–Waterman for DNA sequence alignment.

独CKY algorithm for parsing context-free grammars. 
...

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time / is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic ; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

I t is abundantly clear from the very brief description of possible
applications tha t the problems arising from the study of these
processes are problems of the future as well as of the immediate
present.

Turning to a more precise discussion, let us introduce a small
amount of terminology. A sequence of decisions will be called a
policy, and a policy which is most advantageous according to some
preassigned criterion will be called an optimal policy.

The classical approach to the mathematical problems arising from
the processes described above is to consider the set of all possible

An address delivered before the Summer Meeting of the Society in Laramie on
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954.

503

38

House coloring problem

Goal. Paint a row of n houses red, green, or blue so that

独No two adjacent houses have the same color.

独Minimize total cost, where cost(i, color) is cost to paint i given color.

A B C D E F

7 6 7 8 9 20

3 8 9 22 12 8

16 10 4 2 5 7

cost to paint house i the given color
(3 + 6 + 4 + 8 + 5 + 8 = 34)

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomized algorithms

ALGORITHM DESIGN

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

42

Divide and conquer

独Break up problem into two or more independent subproblems.

独Solve each subproblem recursively.

独Combine solutions to subproblems to form solution to original problem.

 
Familiar examples.

独Mergesort.

独Quicksort. 

More classic examples.

独Closest pair.

独Convolution and FFT.

独Matrix multiplication.

独Integer multiplication. 
…

 
Prototypical usage. Turn brute-force n2 algorithm into n log n algorithm.

needs to take COS 226?

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ network flow

‣ dynamic programming

‣ divide-and-conquer

‣ randomized algorithms

ALGORITHM DESIGN

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

49

Randomized algorithms

Algorithm that uses random coin flips to guide its behavior. 

Familiar examples.

独Quicksort.

独Quickselect.

More classic examples.

独Rabin–Karp substring search.

独Miller–Rabin primality testing.

独Polynomial identity testing.

独Volume of convex body.

独Universal hashing.

独Global min cut. 
…

50

Nuts and bolts

Problem. A disorganized carpenter has a mixed pile of n nuts and n bolts.

独The goal is to find the corresponding pairs of nuts and bolts.

独Each nut fits exactly one bolt and each bolt fits exactly one nut.

独By fitting a nut and a bolt together, the carpenter can see which one is

bigger (but cannot directly compare either two nuts or two bolts).

 
 
 
 
 
 
 
 
 
Brute-force n2 solution. Compare each bolt to each nut.

Challenge. Design an n log n algorithm.

Faculty lead preceptors

 
 
 
 
 
 
Undergraduate graders and lab TAs. Apply to be one next semester!

 
 
Ed tech. Several developed here at Princeton!

Credits

53

, and graduate student AIs., Turing preceptor

A final thought

54

A farewell video (from P04, Fall 2018)

A final thought

55

“ Algorithms and data structures are love.

 Algorithms and data structures are life. ”

 — anonymous COS 226 student

