Final exam

During finals period. 7:30-10:30 PM on Friday, January 15.

- McCosh 50.
including associated
Rules.
- Covers all material through this past Tuesday.
- Emphasizes post-midterm material.
- Honor code, closed book, closed note.
- 8.5-by- 11 page of notes (one side, in your own handwriting).
- Electronic devices are forbidden.

Final preparation.

- Review session: Wednesday 1/13, 5-7 PM, Room TBA.
- Take old exams, but also read (and understand!) lecture notes.

Combinatorial Search and Algorithm Design

- introduction
- permutations
- backtracking
- subsets
- algorithm design principles
- interview questions

Combinatorial Search and Algorithm Design

- introduction
- permutatións

Algorithms

Robert Sedgewick I Kevin Wayne
http://algs4.cs.princeton.edu

- subsets
- algorithm design principles - interview questions

Implications of NP-completeness

"I can't find an efficient algorithm, but neither can all these famous people."

Overview

Exhaustive search. Iterate through all elements of a search space.

Applicability. Huge range of problems (including intractable ones).

Caveat. Search space is typically exponential in size \Rightarrow effectiveness may be limited to relatively small instances.

Backtracking. Method for examining feasible solutions to a problem, by systematically pruning infeasible ones.

Warmup: enumerate N -bit strings

Goal. Process all 2^{N} bit strings of length N.

- Maintain array a[] where a[i] represents bit i.
- Simple recursive method does the job.

$N=4$

Remark. Equivalent to counting in binary from 0 to $2^{N}-1$.

Warmup: enumerate N -bit strings

```
public class BinaryCounter
{
    private int N; // number of bits
    private int[] a; // a[i] = ith bit
    public BinaryCounter(int N)
    {
        this.N = N;
        this.a = new int[N];
        enumerate(0);
    }
    private void process()
    {
        for (int i = 0; i < N; i++)
            StdOut.print(a[i]) + " ";
        StdOut.println();
    }
    private void enumerate(int k)
    {
        if (k == N)
        { process(); return; }
        enumerate(k+1);
        a[k] = 1;
        enumerate(k+1);
        a[k] = 0;
    }
}
```

```
public static void main(String[] args)
{
        int N = Integer.parseInt(args[0]);
        new BinaryCounter(N);
}
```

all programs in this lecture are variations on this theme

```
% java BinaryCounter 4
O O O O
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
100 0
1 0 0 1
1010
1 0 1 1
1 1 0 0
1101
1110
1 1 1 1
```


Combinatorial Search and Algorithm Design

- ínsroduction
- permutations

Algorithms

Robert Sedgewick \| Kevin Wayne
http://algs4.cs.princeton.edu
bbacktracking

- subsets
- algorithm design principles - interview questions

Traveling salesperson problem

Euclidean TSP. Given N points in the plane, find the shortest tour. Proposition. Euclidean TSP is NP-hard.

13509 cities in the USA and an optimal tour
Brute force. Design an algorithm that checks all tours by enumerating all possible orderings for cities.

N-rooks problem

Q. How many ways are there to place N rooks on an N-by- N board so that no rook can attack any other?

$$
\operatorname{int}[] a=\{2,0,1,3,6,7,4,5\} ;
$$

Representation. No two rooks in the same row or column \Rightarrow permutation.

Challenge. Enumerate all N ! permutations of N integers 0 to $N-1$.

Enumerating permutations

Recursive algorithm to enumerate all N ! permutations of N elements.

- Start with permutation a[0] to a[N-1].
- For each value of i :
- swap a[i] into position 0
- enumerate all $(N-1)$! permutations of a[1] to a[N-1]
- clean up (swap a[i] back to original position)

Enumerating permutations

Recursive algorithm to enumerate all N ! permutations of N elements.

- Start with permutation of $a[k]$ to $a[N-1]$ (where initially $k=0$).
- For each value of i starting with k :
- swap a[i] into position k
- enumerate all $(N-1)$! permutations of $a[k+1]$ to $a[N-1]$
- clean up (swap a[i] back to original position)

```
// place N-k rooks in a[k] to a[N-1]
private void enumerate(int k)
{
    if (k == N)
    { process(); return; }
    for (int i = k; i < N; i++)
    {
        exch(k, i);
        enumerate(k+1);
        exch(i, k);
    }
}
```


Enumerating permutations

```
public class Rooks
{
    private int N;
    private int[] a; // bits (0 or 1)
    public Rooks(int N)
    {
        this.N = N;
        a = new int[N];
        for (int i = 0; i < N; i++)
            a[i] = i; \longleftarrow initial permutation
        enumerate(0);
    }
    private void enumerate(int k)
    { /* see previous slide */ }
    private void exch(int i, int j)
    { int t = a[i]; a[i] = a[j]; a[j] = t; }
    public static void main(String[] args)
    {
        int N = Integer.parseInt(args[0]);
        new Rooks(N);
    }
}
```

\% java Rooks 2
01
10
\% java Rooks 3
012
021
102
120
210
201

4-rooks search tree

Combinatorial Search and Algorithm Design

- ínsroduction
- permutatións
- backtracking

Algorithms

Robert Sedgewick I Kevin Wayne
http://algs4.cs.princeton.edu
-subsets

- algorithm design principles \rightarrow interview questions

N -queens problem

Q. How many ways are there to place N queens on an N-by- N board so that no queen can attack any other?

$$
\text { int[] } a=\{2,7,3,6,0,5,1,4\} ;
$$

Representation. No 2 queens in the same row or column \Rightarrow permutation. Additional constraint. No diagonal attack is possible.

Challenge. Enumerate (or even count) the solutions. \longleftarrow

4-queens search tree

4-queens search tree (pruned)

Backtracking

Backtracking paradigm. Iterate through elements of search space.

- When there are several possible choices, make one choice and recur.
- If the choice is a dead end, backtrack to previous choice, and make next available choice.

Benefit. Identifying dead ends allows us to prune the search tree.

Ex. [backtracking for N-queens problem]

- Dead end: a diagonal conflict.
- Pruning: backtrack and try next column when diagonal conflict found.

Applications. Puzzles, combinatorial optimization, parsing, ...

N -queens problem: backtracking solution

```
private boolean canBacktrack(int k)
    {
        for (int i = 0; i < k; i++)
        {
            if ((a[i] - a[k]) == (k - i)) return true;
            if ((a[k] - a[i]) == (k - i)) return true;
        }
        return false;
}
    // place N-k queens in a[k] to 
    {
        if (k == N)
        { process(); return; }
        for (int i = k; i < N; i++)
        {
            exch(k, i);
        if (!canBacktrack(k)) enumerate(k+1);
        exch(i, k);
        }
}
```

```
    % java Queens 4
130 2
2 0 3 1
% java Queens 5
0 2 4 1 3
0 3 1 4 2
1 3024
14 2 0 3
2 0 3 1 4
2413 0
3 1420
3 0 2 4 1
4 1 3 0 2
4 0 3 1
% java Queens 6
1 3 5 0 2 4
2 5 1 4 0 3
3 04 1 5 2
420531
```


N -queens problem: effectiveness of backtracking

Pruning the search tree leads to enormous time savings.

N	$\mathrm{Q}(\mathrm{N})$	$\mathrm{N}!$	time (sec)
8	92	40,320	-
9	352	362,880	-
10	724	$3,628,800$	-
11	2,680	$39,916,800$	-
12	14,200	$479,001,600$	1.1
13	73,712	$6,227,020,800$	5.4
14	365,596	$87,178,291,200$	29
15	$2,279,184$	$1,307,674,368,000$	210
16	$14,772,512$	$20,922,789,888,000$	1352

Conjecture. $Q(N) \sim N!/ c^{N}$, where c is about 2.54.
Hypothesis. Running time is about (N !/2.5N)/43,000 seconds.

Some backtracking success stories

TSP. Concorde solves real-world TSP instances with $\sim 85 \mathrm{~K}$ points.

- Branch-and-cut.
- Linear programming.

Combinatorial
Optimization and
Net worked
Combinatorial
Optimization
Research and
Development
Environment

SAT. Chaff solves real-world instances with $\sim 10 \mathrm{~K}$ variables.

- Davis-Putnam backtracking.
- Boolean constraint propagation.
- ...

Chaff: Engineering an Efficient SAT Solver

Matthew W. Moskewicz
Department of EECS
UC Berkeley
moskewcz@alumni.princeton.edu

ABSTRACT

Boolean Satisfiability is probably the most studied of combinatorial optimization/search problems. Significant effort has been devoted to trying to provide practical solutions to this problem for problem instances encountered in a range of in Artificial Intelligence Design Automation (EDA), as well as

Ying Zhao, Lintao Zhang, Sharad Malik Department of Electrical Engineering Princeton University
\{yingzhao, lintaoz, sharad\}@ee.princeton.edu

Many publicly available SAT solvers (e.g. GRASP [8], POSIT [5], SATO [13], rel_sat [2], WalkSAT [9]) have been developed, most employing some combination of two main strategies: the Davis-Putnam (DP) backtrack search and heuristic guaranteed to be complete (i.e. they are not guaranteed to find a satisfying assignment if one exists or prove unsatisfiability); as a

Combinatorial Search and Algorithm Design

- ínsroduction
- permutatións

Algorithms

Robert Sedgewick I Kevin Wayne
http://algs4.cs.princeton.edu

- back+racking
- subsets
- algorithm design principles - interview questions

Enumerating subsets: natural binary encoding

Given N elements, enumerate all 2^{N} subsets.

- Count in binary from 0 to $2^{N}-1$.
- Maintain array a[] where a[i] represents element i.
- If $1, a[i]$ in subset; if 0 , $a[i]$ not in subset.

i	binary	subset
0	0000	empty
1	0001	0
2	0010	1
3	0011	10
4	0100	2
5	0101	20
6	0110	21
7	0111	210
8	1000	3
9	1001	30
10	1010	31
11	$1 \begin{array}{llll}1 & 0 & 1\end{array}$	310
12	1100	32
13	1101	320
14	1110	321
15	1111	3210

Enumerating subsets: natural binary encoding

Given N elements, enumerate all 2^{N} subsets.

- Count in binary from 0 to $2^{N}-1$.
- Maintain array a[] where a[i] represents element i.
- If $1, a[i]$ in subset; if 0 , $a[i]$ not in subset.

Binary counter from warmup does the job.

```
private void enumerate(int k)
{
    if (k == N)
    { process(); return; }
    enumerate(k+1);
    a[k] = 1;
    enumerate(k+1);
    a[k] = 0;
}
```

But multiple elements added / removed at once - can do better!

Binary reflected gray code

Def. The k-bit binary reflected Gray code is:

- The ($k-1$) bit code, with a 0 prepended to each word, followed by:
- The $(k-1)$ bit code in reverse order, with a 1 prepended to each word.

Proposition. The Gray code enumerates all k-bit binary integers, while flipping only a single bit between adjacent codewords.

Pf. [By induction]

Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:

- Flip a[k] instead of setting it to 1.
- Eliminate cleanup.

Gray code binary counter

```
// al1 bit strings in a[k] to a[N-1]
```

private void enumerate(int k)
\{
if (k == N)
\{ process(); return; \}
enumerate $(k+1)$;

```
    a[k] = 1 - a[k];
```

 enumerate \((k+1)\);
 \}

$0 \longdiv { 0 } 0$
001
01
010
110
1111
101
100

// al1 bit strings in a[k] to a[N-1]
private void enumerate(int k)
\{
if ($k==N$)
\{ process(); return; \}
enumerate $(k+1)$;

```
a[k] = 1;
```


Advantage. Only one element in subset changes at a time.

More applications of Gray codes

Towers of Hanoi
(move ith smallest disk when bit i changes in Gray code)

Chinese ring puzzle (Baguenaudier)
(move ith ring from right when bit i changes in Gray code)

Scheduling

Scheduling (set partitioning). Given N jobs of varying lengths, divide among two machines to minimize the time the last job finishes.

Remark. This scheduling problem is NP-complete.

Scheduling (Java implementation)

```
public class Scheduler
{
    private int N; // Number of jobs.
    private int[] a; // Subset assignments.
    private int[] b; // Best assignment.
    private double[] jobs; // Job lengths.
    public Scheduler(doub7e[] jobs)
    {
        this.N = jobs.length;
        this.jobs = jobs;
        a = new int[N];
        b = new int[N];
        enumerate(N);
    }
    public int[] best()
    { return b; }
    private void enumerate(int k)
    { /* Gray code enumeration. */ }
    private void process()
    {
        if (cost(a) < cost(b))
            for (int i = 0; i < N; i++)
                b[i] = a[i];
    }
    public static void main(String[] args)
    { /* create Scheduler, print results */ }
}
```


Combinatorial Search and Algorithm Design

Vintroduction

- permutatións

Algorithms

Robert Sedgewick \mid Kevin Wayne
http://algs4.cs.princeton.edu

- subsets
- algorithm design principles - interview questions

Algorithm design

Algorithm design patterns.

- Reduction to a previously solved problem. [Last time]
- Brute force + pruning. [Today]
- Greedy.
- Dynamic programming.
- Divide-and-conquer.
- Network flow.
- Randomized algorithms.

Want more? See COS 423.

Greedy algorithms

Make locally-optimal choices at each step.

Familiar examples.

- Huffman coding.
- Prim's algorithm.
- Kruskal's algorithm.
- Dijkstra's algorithm.

More classic examples.

- U.S. coin changing.
- Activity scheduling.
- Gale-Shapley stable marriage.
- ...

Caveat. Greedy algorithm only sometimes leads to optimal solution (but is often used anyway, especially for intractable problems).

Dynamic programming

"Eager" solution of overlapping subproblems.

- Build up solutions to larger and larger subproblems (caching solutions in a table for later reuse).
- Choose order so that partial results are available when you need them.

Familiar examples.

- Shortest paths in DAGs.
- Seam carving.
- Bellman-Ford.

More classic examples.

- Unix diff.
- Viterbi algorithm for hidden Markov models.
- Smith-Waterman for DNA sequence alignment.
- CKY algorithm for parsing context-free grammars.

Divide and conquer

Break up problem into independent subproblems.

- Solve each subproblem recursively.
- Combine solutions to subproblems to form solution to original problem.

Familiar example.

- Mergesort.
- Quicksort.

More classic examples.

- Closest pair.
- Convolution and FFT.
- Matrix multiplication.
- Integer multiplication.

needs to take COS $226 ?$

Prototypical usage. Turns brute-force N^{2} algorithm into $N \log N$ algorithm.

Network flow

Classic problems on graphs with weights.

Familiar examples.

- Shortest paths.
- Bipartite matching.
- Maxflow and mincut.
- Minimum spanning tree.

Other classic examples.

- Nonbipartite matching.

- Min cost arborescence.
- Assignment problem.
- Min cost flow.
- ...

Applications. Many problems in science, engineering, and social sciences.

Randomized algorithms

Use random coin flips to guide behavior.

- Probabilistic guarantees of correctness or performance.

Familiar examples.

- Quicksort.
- Quickselect.
- Rabin-Karp substring search.

More classic examples.

- Miller-Rabin primality testing.
- Polynomial identity testing.
- Volume of convex body.
- Universal hashing.
- Global min cut.

