
1

Final exam

During finals period.  7:30-10:30 PM on Friday, January 15.

・McCosh 50.

Rules. 

・Covers all material through this past Tuesday.

・Emphasizes post-midterm material.

・Honor code, closed book, closed note.

・8.5-by-11 page of notes (one side, in your own handwriting).

・Electronic devices are forbidden.

Final preparation.

・Review session:  Wednesday 1/13, 5-7 PM, Room TBA. 

・Take old exams, but also read (and understand!) lecture notes.

including associated
readings and assignments

(but no serious Java programming)



ROBERT SEDGEWICK  |  KEVIN WAYNE

F O U R T H  E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK  |  KEVIN WAYNE

COMBINATORIAL SEARCH AND
ALGORITHM DESIGN

‣ introduction

‣ permutations

‣ backtracking

‣ subsets

‣ algorithm design principles

‣ interview questions

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu


http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction

‣ permutations

‣ backtracking

‣ subsets

‣ algorithm design principles

‣ interview questions

COMBINATORIAL SEARCH AND
ALGORITHM DESIGN

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu


4

Implications of NP-completeness



5

Overview

Exhaustive search.  Iterate through all elements of a search space.

Applicability.  Huge range of problems (including intractable ones).

Caveat.  Search space is typically exponential in size  ⇒

effectiveness may be limited to relatively small instances.

Backtracking.  Method for examining feasible solutions to a problem,

by systematically pruning infeasible ones.



Goal.  Process all 2N bit strings of length N.

・Maintain array a[] where a[i] represents bit i.

・Simple recursive method does the job.

 

Remark.  Equivalent to counting in binary from 0 to 2N – 1.
6

// enumerate bits in a[k] to a[N-1]
private void enumerate(int k)
{
  if (k == N)
  {  process(); return;  }
  enumerate(k+1);
  a[k] = 1;
  enumerate(k+1);
  a[k] = 0;
}

N = 4

Warmup:  enumerate N-bit strings

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0 
1 1 0 1
1 1 1 0
1 1 1 1

N = 3

a[0] a[N-1]

0 0 0
0 0 1
0 0 0
0 1 0
0 1 1
0 1 0
0 0 0
1 0 0
1 0 1
1 0 0
1 1 0
1 1 1
1 1 0
1 0 0
0 0 0

clean up



public class BinaryCounter
{
   private int N;   // number of bits
   private int[] a; // a[i] = ith bit

   public BinaryCounter(int N)
   {
      this.N = N;
      this.a = new int[N];
      enumerate(0);
   }

   private void process()
   {
      for (int i = 0; i < N; i++)
         StdOut.print(a[i]) + " ";
      StdOut.println();
   }

   private void enumerate(int k)
   {
     if (k == N)  
     {  process(); return;  }
     enumerate(k+1);
     a[k] = 1;
     enumerate(k+1);
     a[k] = 0;
   }  
}

7

Warmup:  enumerate N-bit strings

public static void main(String[] args)
{
   int N = Integer.parseInt(args[0]);
   new BinaryCounter(N);
}

% java BinaryCounter 4
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

all programs in this
lecture are variations

on this theme



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction

‣ permutations

‣ backtracking

‣ subsets

‣ algorithm design principles

‣ interview questions

COMBINATORIAL SEARCH AND
ALGORITHM DESIGN

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu


Euclidean TSP.  Given N points in the plane, find the shortest tour.

Proposition.  Euclidean TSP is NP-hard.

Brute force.  Design an algorithm that checks all tours by

enumerating all possible orderings for cities.
9

Traveling salesperson problem

13509 cities in the USA and an optimal tour



10

N-rooks problem

Q.  How many ways are there to place N rooks on an N-by-N board so that

no rook can attack any other?

Representation.  No two rooks in the same row or column  ⇒  permutation.

Challenge.  Enumerate all N ! permutations of N integers 0 to N – 1.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

int[] a = { 2, 0, 1, 3, 6, 7, 4, 5 };

a[4] = 6 means the rook 
from row 4 is in column 6 



11

Enumerating permutations

Recursive algorithm to enumerate all N ! permutations of N elements.

・Start with permutation a[0] to a[N-1].

・For each value of i:

– swap a[i] into position 0

– enumerate all (N – 1) ! permutations of a[1] to a[N-1]

– clean up (swap a[i] back to original position)

3 1 2 0
3 1 0 2
3 2 1 0
3 2 0 1
3 0 2 1
3 0 1 2

1 0 2 3
1 0 3 2
1 2 0 3
1 2 3 0
1 3 2 0
1 3 0 2

2 1 0 3
2 1 3 0
2 0 1 3
2 0 3 1
2 3 0 1
2 3 1 0

3 followed by
perms of 1 2 0

0 followed by
perms of 1 2 3

1 followed by
perms of 0 2 3

2 followed by
perms of 1 0 3

0 1 2 3
0 1 3 2
0 2 1 3
0 2 3 1
0 3 2 1
0 3 1 2

0 1 2
0 2 1
0 1 2
1 0 2
1 2 0
1 0 2
0 1 2
2 1 0
2 0 1
2 1 0
0 1 2

cleanup swaps that bring
permutation back to original

N = 3

a[0] a[N-1]



Recursive algorithm to enumerate all N ! permutations of N elements.

・Start with permutation of a[k] to a[N-1] (where initially k=0).

・For each value of i starting with k:

– swap a[i] into position k

– enumerate all (N – 1) ! permutations of a[k+1] to a[N-1]

– clean up (swap a[i] back to original position)

// place N-k rooks in a[k] to a[N-1]
private void enumerate(int k)
{
   if (k == N)
   {  process(); return;  }
  
   for (int i = k; i < N; i++)
   {
      exch(k, i);
      enumerate(k+1);
      exch(i, k);
   }
}

Enumerating permutations

12

clean up



public class Rooks
{
   private int N;
   private int[] a;  // bits (0 or 1)

   public Rooks(int N)
   {
      this.N = N;
      a = new int[N];
      for (int i = 0; i < N; i++)
         a[i] = i;
      enumerate(0);
   }

   private void enumerate(int k)
   { /* see previous slide */  } 

   private void exch(int i, int j)
   {  int t = a[i]; a[i] = a[j]; a[j] = t;  }

   public static void main(String[] args)
   {
      int N = Integer.parseInt(args[0]);
      new Rooks(N);
   }
}

13

Enumerating permutations

% java Rooks 2
0 1 
1 0 

% java Rooks 3
0 1 2 
0 2 1 
1 0 2 
1 2 0 
2 1 0 
2 0 1 

initial permutation



14

4-rooks search tree

solutions

. . .



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction

‣ permutations

‣ backtracking

‣ subsets

‣ algorithm design principles

‣ interview questions

COMBINATORIAL SEARCH AND
ALGORITHM DESIGN

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu


Q.  How many ways are there to place N queens on an N-by-N board so that

no queen can attack any other?

Representation.  No 2 queens in the same row or column  ⇒  permutation.

Additional constraint.  No diagonal attack is possible.

Challenge.  Enumerate (or even count) the solutions.
16

N-queens problem

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

unlike N-rooks problem,
nobody knows answer for N  > 30

int[] a = { 2, 7, 3, 6, 0, 5, 1, 4 };

a[1] = 6 means the queen 
from row 1 is in column 6 



17

4-queens search tree

diagonal conflict
on partial solution:

no point going deeper

solutions



18

4-queens search tree (pruned)

"backtrack" on
diagonal conflicts

solutions



19

Backtracking paradigm.  Iterate through elements of search space.

・When there are several possible choices, make one choice and recur.

・If the choice is a dead end, backtrack to previous choice,

and make next available choice.

Benefit.  Identifying dead ends allows us to prune the search tree.

Ex.  [backtracking for N-queens problem]

・Dead end:  a diagonal conflict.

・Pruning:  backtrack and try next column when diagonal conflict found.

Applications.  Puzzles, combinatorial optimization, parsing, ... 

Backtracking



  private boolean canBacktrack(int k)
  {
     for (int i = 0; i < k; i++)
     {
        if ((a[i] - a[k]) == (k - i)) return true;
        if ((a[k] - a[i]) == (k - i)) return true;
     }
     return false;
  }

  // place N-k queens in a[k] to a[N-1]
  private void enumerate(int k)
  {
     if (k == N)
     {  process(); return;  }

     for (int i = k; i < N; i++)
     {
        exch(k, i);
        if (!canBacktrack(k)) enumerate(k+1);
        exch(i, k);
     }
  }

20

N-queens problem:  backtracking solution

stop enumerating if 
adding queen k leads 
to a diagonal violation

% java Queens 4
1 3 0 2
2 0 3 1

% java Queens 5
0 2 4 1 3 
0 3 1 4 2 
1 3 0 2 4 
1 4 2 0 3 
2 0 3 1 4 
2 4 1 3 0 
3 1 4 2 0 
3 0 2 4 1 
4 1 3 0 2 
4 2 0 3 1 

% java Queens 6
1 3 5 0 2 4 
2 5 1 4 0 3 
3 0 4 1 5 2 
4 2 0 5 3 1 

a[0] a[N-1]



Pruning the search tree leads to enormous time savings.

Conjecture.  Q(N)  ~  N !  /  c N, where c is about 2.54.

Hypothesis.  Running time is about (N !  /  2.5N ) /  43,000 seconds.

N-queens problem:  effectiveness of backtracking

21

N Q(N) N ! time (sec)

8 92 40,320 –

9 352 362,880 –

10 724 3,628,800 –

11 2,680 39,916,800 –

12 14,200 479,001,600 1.1

13 73,712 6,227,020,800 5.4

14 365,596 87,178,291,200 29

15 2,279,184 1,307,674,368,000 210

16 14,772,512 20,922,789,888,000 1352



TSP.  Concorde solves real-world TSP instances with  ~ 85K points.

・Branch-and-cut.

・Linear programming.

・...

SAT.  Chaff solves real-world instances with ~ 10K variables.

・Davis-Putnam backtracking.

・Boolean constraint propagation.

・...

Some backtracking success stories

22

Chaff: Engineering an Efficient SAT Solver 
Matthew W. Moskewicz 
Department of EECS 
UC Berkeley 
moskewcz@alumni.princeton.edu 

Conor F. Madigan 
Department of EECS 
MIT 
cmadigan@mit.edu 

Ying Zhao, Lintao Zhang, Sharad Malik 
Department of Electrical Engineering 
Princeton University 
{yingzhao, lintaoz, sharad}@ee.princeton.edu

 
ABSTRACT 

Boolean Satisfiability is probably the most studied of 
combinatorial optimization/search problems. Significant effort 
has been devoted to trying to provide practical solutions to this 
problem for problem instances encountered in a range of 
applications in Electronic Design Automation (EDA), as well as 
in Artificial Intelligence (AI). This study has culminated in the 
development of several SAT packages, both proprietary and in 
the public domain (e.g. GRASP, SATO) which find significant 
use in both research and industry. Most existing complete solvers 
are variants of the Davis-Putnam (DP) search algorithm. In this 
paper we describe the development of a new complete solver, 
Chaff, which achieves significant performance gains through 
careful engineering of all aspects of the search – especially a 
particularly efficient implementation of Boolean constraint 
propagation (BCP) and a novel low overhead decision strategy. 
Chaff has been able to obtain one to two orders of magnitude 
performance improvement on difficult SAT benchmarks in 
comparison with other solvers (DP or otherwise), including 
GRASP and SATO.  
Categories and Subject Descriptors 
J6 [Computer-Aided Engineering]: Computer-Aided Design. 

General Terms 
Algorithms, Verification. 

Keywords 
Boolean satisfiability, design verification. 

1. Introduction 
The Boolean Satisfiability (SAT) problem consists of 

determining a satisfying variable assignment, V, for a Boolean 
function, f, or determining that no such V exists.  SAT is one of 
the central NP-complete problems. In addition, SAT lies at the 
core of many practical application domains including EDA (e.g. 
automatic test generation [10] and logic synthesis [6]) and AI 
(e.g. automatic theorem proving).  As a result, the subject of 
practical SAT solvers has received considerable research 
attention, and numerous solver algorithms have been proposed 
and implemented. 

 
 
 
 
 
 
 
 
 
 

 Many publicly available SAT solvers (e.g. GRASP [8], 
POSIT [5], SATO [13], rel_sat [2], WalkSAT [9]) have been 
developed, most employing some combination of two main 
strategies: the Davis-Putnam (DP) backtrack search and heuristic 
local search.  Heuristic local search techniques are not 
guaranteed to be complete (i.e. they are not guaranteed to find a 
satisfying assignment if one exists or prove unsatisfiability); as a 
result, complete SAT solvers (including ours) are based almost 
exclusively on the DP search algorithm. 

1.1 Problem Specification 
Most solvers operate on problems for which f is specified in 

conjunctive normal form (CNF).  This form consists of the 
logical AND of one or more clauses, which consist of the logical 
OR of one or more literals.  The literal comprises the 
fundamental logical unit in the problem, being merely an 
instance of a variable or its complement.  (In this paper, 
complement is represented by ¬.)  All Boolean functions can be 
described in the CNF format.  The advantage of CNF is that in 
this form, for f to be satisfied (sat), each individual clause must 
be sat. 

1.2 Basic Davis-Putnam Backtrack Search 
We start with a quick review of the basic Davis-Putnam 

backtrack search. This is described in the following pseudo-code 
fragment: 
 
while (true) { 
  if (!decide()) // if no unassigned vars 
    return(satisifiable); 
  while (!bcp()) {  
    if (!resolveConflict()) 

return(not satisfiable); 
  } 
} 
 
bool resolveConflict() { 
  d = most recent decision not ‘tried both 
ways’; 
 
  if (d == NULL) // no such d was found 
    return false; 
       
  flip the value of d; 
  mark d as tried both ways; 
  undo any invalidated implications; 
  return true; 
} 
 

The operation of decide() is to select a variable that is 
not currently assigned, and give it a value.  This variable 
assignment is referred to as a decision.  As each new decision is 
made, a record of that decision is pushed onto the decision stack. 



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction

‣ permutations

‣ backtracking

‣ subsets

‣ algorithm design principles

‣ interview questions

COMBINATORIAL SEARCH AND
ALGORITHM DESIGN

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu


Given N elements, enumerate all 2N subsets.

・Count in binary from 0 to 2N – 1.

・Maintain array a[] where a[i] represents element i.

・If 1, a[i] in subset; if 0, a[i] not in subset.

24

Enumerating subsets:  natural binary encoding

empty
0
1

1 0
2

2 0
2 1
2 1 0
3

3 0
3 1
3 1 0
3 2
3 2 0
3 2 1

 3 2 1 0

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

i binary subset



25

Enumerating subsets:  natural binary encoding

Given N elements, enumerate all 2N subsets.

・Count in binary from 0 to 2N – 1.

・Maintain array a[] where a[i] represents element i.

・If 1, a[i] in subset; if 0, a[i] not in subset.

Binary counter from warmup does the job.

But multiple elements added / removed at once - can do better!

private void enumerate(int k)
{
  if (k == N)
  {  process(); return;  }
  enumerate(k+1);
  a[k] = 1;
  enumerate(k+1);
  a[k] = 0;
}



Def.  The k-bit binary reflected Gray code is:

・The (k – 1) bit code, with a 0 prepended

to each word, followed by:

・The (k – 1) bit code in reverse order,

with a 1 prepended to each word.

Proposition.  The Gray code enumerates all

k-bit binary integers, while flipping only a

single bit between adjacent codewords.

Pf.  [By induction]

26

Binary reflected gray code

a[0] a[N-1]



27

Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:

・Flip a[k] instead of setting it to 1.

・Eliminate cleanup.

Advantage.  Only one element in subset changes at a time.

// all bit strings in a[k] to a[N-1]
private void enumerate(int k)
{
  if (k == N)
  {  process(); return;  }
  enumerate(k+1);
  a[k] = 1 - a[k];
  enumerate(k+1);
}

// all bit strings in a[k] to a[N-1]
private void enumerate(int k)
{
  if (k == N)
  {  process(); return;  }
  enumerate(k+1);
  a[k] = 1;
  enumerate(k+1);
  a[k] = 0;
}

standard binary counter (from warmup)Gray code binary counter

0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

same values
since no cleanup

a[0] a[N-1]



28

More applications of Gray codes

3-bit rotary encoder

Chinese ring puzzle (Baguenaudier)
(move ith ring from right when bit i changes in Gray code)

8-bit rotary encoder

Towers of Hanoi
(move ith smallest disk when bit i changes in Gray code)

000

001

101111

011

010

110 100



Scheduling (set partitioning).  Given N jobs of varying lengths, divide 

among two machines to minimize the time the last job finishes.

Remark.  This scheduling problem is NP-complete.
29

Scheduling

or, equivalently, difference
between finish times cost

0

2

1

3

0

3

1 2

machine 0

machine 1

machine 0

machine 1

job length

0 1.41

1 1.73

2 2.00

3 2.23

.09



30

Scheduling (Java implementation)

a[] finish times costpublic class Scheduler
{
   private int N;          // Number of jobs.
   private int[] a;        // Subset assignments.
   private int[] b;        // Best assignment.
   private double[] jobs;  // Job lengths.

   public Scheduler(double[] jobs)
   {
      this.N = jobs.length;
      this.jobs = jobs;
      a = new int[N];
      b = new int[N];
      enumerate(N);
   }

   public int[] best()
   {  return b;  }

   private void enumerate(int k)
   {  /* Gray code enumeration. */   }  

   private void process()
   {  
     if (cost(a) < cost(b))
       for (int i = 0; i < N; i++)
         b[i] = a[i];
   }

   public static void main(String[] args)
   {  /* create Scheduler, print results */  }
}

0  0  0  0    7.38   0.00   7.38
0  0  0  1    5.15   2.24   2.91
0  0  1  1    3.15   4.24   1.09
0  0  1  0    5.38   2.00 
0  1  1  0    3.65   3.73   0.08
0  1  1  1    1.41   5.97 
0  1  0  1    3.41   3.97 
0  1  0  0    5.65   1.73 
1  1  0  0    4.24   3.15 
1  1  0  1    2.00   5.38 
1  1  1  1    0.00   7.38 
1  1  1  0    2.24   5.15 
1  0  1  0    3.97   3.41 
1  0  1  1    1.73   5.65 
1  0  0  1    3.73   3.65 
1  0  0  0    5.97   1.41 

MACHINE 0     MACHINE 1
     1.41
                   1.73
                   2.00
     2.24 
-----------------------
     3.65          3.73



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ introduction

‣ permutations

‣ backtracking

‣ subsets

‣ algorithm design principles

‣ interview questions

COMBINATORIAL SEARCH AND
ALGORITHM DESIGN

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu


32

Algorithm design

Algorithm design patterns.

・Reduction to a previously solved problem.  [Last time]

・Brute force + pruning.  [Today]

・Greedy.

・Dynamic programming.

・Divide-and-conquer.

・Network flow.

・Randomized algorithms.

Want more?  See COS 423.



33

Greedy algorithms

Make locally-optimal choices at each step.

Familiar examples.

・Huffman coding.

・Prim's algorithm.

・Kruskal's algorithm.

・Dijkstra's algorithm.

More classic examples.

・U.S. coin changing.

・Activity scheduling.

・Gale-Shapley stable marriage.

・...

Caveat.  Greedy algorithm only sometimes leads to optimal solution

(but is often used anyway, especially for intractable problems).



34

Dynamic programming

“Eager” solution of overlapping subproblems.

・Build up solutions to larger and larger subproblems

(caching solutions in a table for later reuse).

・Choose order so that partial results are available when you need them.

Familiar examples.

・Shortest paths in DAGs.

・Seam carving.

・Bellman-Ford.

More classic examples.

・Unix diff.

・Viterbi algorithm for hidden Markov models.

・Smith-Waterman for DNA sequence alignment.

・CKY algorithm for parsing context-free grammars.

...

THE THEORY OF DYNAMIC PROGRAMMING 
RICHARD BELLMAN 

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical 
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming. 

To begin with, the theory was created to treat the mathematical 
problems arising from the study of various multi-stage decision 
processes, which may roughly be described in the following way: We 
have a physical system whose state at any time / is determined by a 
set of quantities which we call state parameters, or state variables. 
At certain times, which may be prescribed in advance, or which may 
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are 
equivalent to transformations of the state variables, the choice of a 
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of 
future ones, with the purpose of the whole process that of maximizing 
some function of the parameters describing the final state. 

Examples of processes fitting this loose description are furnished 
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical 
clinic ; from the determination of long-term investment programs for 
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for 
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments. 

I t is abundantly clear from the very brief description of possible 
applications tha t the problems arising from the study of these 
processes are problems of the future as well as of the immediate 
present. 

Turning to a more precise discussion, let us introduce a small 
amount of terminology. A sequence of decisions will be called a 
policy, and a policy which is most advantageous according to some 
preassigned criterion will be called an optimal policy. 

The classical approach to the mathematical problems arising from 
the processes described above is to consider the set of all possible 

An address delivered before the Summer Meeting of the Society in Laramie on 
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954. 

503 



35

Divide and conquer

Break up problem into independent subproblems.

・Solve each subproblem recursively.

・Combine solutions to subproblems to form solution to original problem.

Familiar example.

・Mergesort.

・Quicksort.

More classic examples.

・Closest pair.

・Convolution and FFT. 

・Matrix multiplication.

・Integer multiplication.

…

Prototypical usage.  Turns brute-force N 2 algorithm into N log N algorithm.

needs to take COS 226?



36

Network flow

Classic problems on graphs with weights.

Familiar examples.

・Shortest paths.

・Bipartite matching.

・Maxflow and mincut.

・Minimum spanning tree.

Other classic examples.

・Nonbipartite matching.

・Min cost arborescence.

・Assignment problem.

・Min cost flow.

・...

Applications.  Many problems in science, engineering, and social sciences.



37

Randomized algorithms

Use random coin flips to guide behavior.

・Probabilistic guarantees of correctness or performance.

Familiar examples.

・Quicksort.

・Quickselect.

・Rabin-Karp substring search.

More classic examples.

・Miller-Rabin primality testing.

・Polynomial identity testing.

・Volume of convex body.

・Universal hashing.

・Global min cut.

…


