
ROBERT SEDGEWICK  |  KEVIN WAYNE

F O U R T H  E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK  |  KEVIN WAYNE

Last updated on 11/22/19 9:30 AM

5.1  STRING SORTS

‣ strings in Java 

‣ key-indexed counting 

‣ LSD radix sort 

‣ MSD radix sort 

‣ 3-way radix quicksort 

‣ suffix arrayshttps://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu


ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ strings in Java 

‣ key-indexed counting 

‣ LSD radix sort 

‣ MSD radix sort 

‣ 3-way radix quicksort 

‣ suffix arrays

5.1  STRING SORTS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu


3

String processing

String.  Sequence of characters. 

 
Important fundamental abstraction. 

独Programming systems (e.g., Java programs). 

独Communication systems (e.g., email). 

独Information processing. 

独Genomic sequences. 

独…

“The digital information that underlies biochemistry, cell  
   biology, and development can be represented by a  simple  
  string of  G’s, A’s, T’s and C’s.   This string is the root data 
  structure of an organism’s biology.  ”  — M. V. Olson

 AMERICAN~~~~~~~~~~~~~~~~~~~~~~~~~~,~ ~

 SCI ENCE A; ''~
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C char data type.  Typically an 8-bit integer. 

独Supports 7-bit ASCII. 

独Represents only 256 characters. 

 
 
 
 
 
 
 
 
 
 
Java char data type.  A 16-bit unsigned integer. 

独Supports 16-bit Unicode 1.0.1. 

独Supports 21-bit Unicode 10.0 (via UTF-8).
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The char data type

U+2202U+00E1U+0041

some Unicode characters 

U+1F4A9

!

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! " # $ % & ' ( ) * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [ \ ] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

Hexadecimal-to-ASCII conversion tableall 27 = 128 ASCII characters 

136,755 characters and emoji

7,161 characters

between 0 and 216 � 1 = 65,535
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I " Unicode

U+1F496

"



String data type.  Immutable sequence of characters. 

Java representation.  A fixed-length char[] array.

6

The String data type (in Java)

operation description Java running time

length number of characters s.length() 1

indexing ith character s.charAt(i) 1

concatenation
concatenate one string to 

the end of the other
s + t m  +  n

⋮ ⋮

Fundamental constant-time  String  operations

0  1  2  3  4  5  6  7  8  9 10 11 12

A  T  T  A  C  K  A  T  D  A  W  N  s

s.charAt(3)

s.length()

Fundamental constant-time  String  operations

0  1  2  3  4  5  6  7  8  9 10 11 12

A  T  T  A  C  K  A  T  D  A  W  N  s

s.charAt(3)

s.length()

Fundamental constant-time  String  operations

0  1  2  3  4  5  6  7  8  9 10 11 12

A  T  T  A  C  K  A  T  D  A  W  N  s

s.charAt(3)

s.length()
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String performance trap

Q.  How to build a long string, one character at a time? 

 
 
 
 
 
 
 
StringBuilder data type.  Mutable sequence of characters. 

Java representation.  A resizing char[] array.

  public static String reverse(String s) 

  { 

     String reverse = ""; 

     for (int i = s.length() - 1; i >= 0; i--) 

        reverse += s.charAt(i); 

     return reverse; 

  }

quadratic time 

(1 + 2 + 3 + … + n)

  public static String reverse(String s) 

  { 

     StringBuilder reverse = new StringBuilder(); 

     for (int i = s.length() - 1; i >= 0; i--) 

        reverse.append(s.charAt(i)); 

     return reverse.toString(); 

  }

linear time 

n + (1 + 2 + 4 + 8 + … + n)



Q.  Why are Java strings immutable? 

 
A.  All the usual reasons. 

独Provides security. 

独Ensures consistent state. 

独Can use as keys in symbol table. 

独Removes need to defensively copy. 

独Supports concurrency / thread safety.  

独Simplifies tracing and debugging code. 

独Enables compiler to perform certain optimizations. 

独… 

Immutable strings.  Java, C#, Python, Scala, ...  

Mutable strings.  C, C++, Matlab, Ruby, …

8

THE STRING DATA TYPE:  IMMUTABILITY



Digital key.  Sequence of digits over a given alphabet. 

Radix.  Number of digits R in alphabet.

Alphabets

9

604 CHAPTER 6  ! Strings

holds the frequencies in Count is an example of a character-indexed array. With a Java 
String, we have to use an array of size 256; with Alphabet, we just need an array with 
one entry for each alphabet character. This savings might seem modest, but, as you will 
see, our algorithms can produce huge numbers of such arrays, and the space for arrays 
of size 256 can be prohibitive.

Numbers. As you can see from our several of the standard Alphabet examples, we of-
ten represent numbers as strings. The methods toIndices() coverts any String over 
a given Alphabet into a base-R number represented as an int[] array with all values 
between 0 and R!1. In some situations, doing this conversion at the start leads to com-
pact code, because any digit can be used as an index in a character-indexed array. For 
example, if we know that the input consists only of characters from the alphabet, we 
could replace the inner loop in Count with the more compact code

int[] a = alpha.toIndices(s); 
for (int i = 0; i < N; i++) 
   count[a[i]]++;

name R() lgR() characters

BINARY 2 1 01

OCTAL 8 3 01234567

DECIMAL 10 4 0123456789

HEXADECIMAL 16 4 0123456789ABCDEF

DNA 4 2 ACTG

LOWERCASE 26 5 abcdefghijklmnopqrstuvwxyz

UPPERCASE 26 5 ABCDEFGHIJKLMNOPQRSTUVWXYZ

PROTEIN 20 5 ACDEFGHIKLMNPQRSTVWY

BASE64 64 6
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef 
ghijklmnopqrstuvwxyz0123456789+/

ASCII 128 7 ASCII characters

EXTENDED_ASCII 256 8 extended ASCII characters

UNICODE16 65536 16 Unicode characters

Standard alphabets
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Review:  summary of the performance of sorting algorithms

Frequency of operations. 

 
 
 
 
 
 
 
 
 
 
 
Lower bound.  ~ n lg n compares required by any compare-based algorithm. 

 
Q.  Can we sort strings faster (despite lower bound)? 

A.  Yes, by exploiting access to individual characters.

11

algorithm guarantee random extra space stable? operations on keys

insertion sort ½ n2 ¼ n2 1 ✔ compareTo()

mergesort n lg n n lg n n ✔ compareTo()

quicksort 1.39 n lg n * 1.39 n lg n c lg n * compareTo()

heapsort 2 n lg n 2 n lg n 1 compareTo()

*  probabilistic

use characters to make 

R-way decisions 

(instead of binary decisions)

compareTo() not constant time for strings



Key-indexed counting:  assumptions about keys

Assumption.  Each key is an integer between 0 and R - 1. 

Implication.  Can use key as an array index. 

 
Applications. 

独Sort string by first letter. 

独Sort playing cards by suit. 

独Sort phone numbers by area code. 

独Sort class roster by section number. 

独Use as a subroutine in string sorting algorithm.   

 
Remark.  Keys may have associated data  ⇒ 
can’t simply count keys of each value.

12

Anderson  2       Harris    1
Brown     3       Martin    1
Davis     3       Moore     1
Garcia    4       Anderson  2
Harris    1       Martinez  2
Jackson   3       Miller    2
Johnson   4       Robinson  2
Jones     3       White     2
Martin    1       Brown     3
Martinez  2       Davis     3
Miller    2       Jackson   3
Moore     1       Jones     3
Robinson  2       Taylor    3
Smith     4       Williams  3
Taylor    3       Garcia    4
Thomas    4       Johnson   4
Thompson  4       Smith     4
White     2       Thomas    4
Williams  3       Thompson  4
Wilson    4       Wilson    4

Typical candidate for key-indexed counting

input sorted result

keys are
small integers 

section (by section) name



Goal.  Sort an array a[] of n integers between 0 and R - 1. 

独Count frequencies of each letter using key as index. 

独Compute frequency cumulates which specify destinations. 

独Access cumulates using key as index to move items. 

独Copy back into original array.

13

Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

R = 6

0 

1 

2 

3 

4 

5

a 

b 

c 

d 

e 

f

use       for 

for 

for 

for 

for 

for

 int n = a.length; 

 int[] count = new int[R+1]; 

 for (int i = 0; i < n; i++) 

    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 

    count[r+1] += count[r]; 

 for (int i = 0; i < n; i++) 

    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < n; i++) 

    a[i] = aux[i];



Goal.  Sort an array a[] of n integers between 0 and R - 1. 

独Count frequencies of each letter using key as index. 

独Compute frequency cumulates which specify destinations. 

独Access cumulates using key as index to move items. 

独Copy back into original array.

a 0

b 2

c 3

d 1

e 2

f 1

- 3

14

Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

offset by 1 

[stay tuned]

r count[r]

 int n = a.length; 

 int[] count = new int[R+1]; 

 for (int i = 0; i < n; i++) 

    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 

    count[r+1] += count[r]; 

 for (int i = 0; i < n; i++) 

    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < n; i++) 

    a[i] = aux[i];

count 
frequencies



Goal.  Sort an array a[] of n integers between 0 and R - 1. 

独Count frequencies of each letter using key as index. 

独Compute frequency cumulates which specify destinations. 

独Access cumulates using key as index to move items. 

独Copy back into original array.

a 0

b 2

c 5

d 6

e 8

f 9

- 12

15

Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

r count[r]

 6 keys < d, 8 keys < e 

so d’s go in a[6] and a[7]

 int n = a.length; 

 int[] count = new int[R+1]; 

 for (int i = 0; i < n; i++) 

    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 

    count[r+1] += count[r]; 

 for (int i = 0; i < n; i++) 

    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < n; i++) 

    a[i] = aux[i];

compute 
cumulates



Goal.  Sort an array a[] of n integers between 0 and R - 1. 

独Count frequencies of each letter using key as index. 

独Compute frequency cumulates which specify destinations. 

独Access cumulates using key as index to move items. 

独Copy back into original array.

a 2

b 5

c 6

d 8

e 9

f 12

- 12
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Key-indexed counting demo

i  a[i]

0 d

1 a

2 c

3 f

4 f

5 b

6 d

7 b

8 f

9 b

10 e

11 a

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

i  aux[i]

 int n = a.length; 

 int[] count = new int[R+1]; 

 for (int i = 0; i < n; i++) 

    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 

    count[r+1] += count[r]; 

 for (int i = 0; i < n; i++) 

    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < n; i++) 

    a[i] = aux[i];

move 
items



Goal.  Sort an array a[] of n integers between 0 and R - 1. 

独Count frequencies of each letter using key as index. 

独Compute frequency cumulates which specify destinations. 

独Access cumulates using key as index to move items. 

独Copy back into original array.

a 2

b 5

c 6

d 8

e 9

f 12

- 12
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Key-indexed counting demo

i  a[i]

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

0 a

1 a

2 b

3 b

4 b

5 c

6 d

7 d

8 e

9 f

10 f

11 f

r count[r]

i  aux[i]

 int n = a.length; 

 int[] count = new int[R+1]; 

 for (int i = 0; i < n; i++) 

    count[a[i]+1]++; 

 for (int r = 0; r < R; r++) 

    count[r+1] += count[r]; 

 for (int i = 0; i < n; i++) 

    aux[count[a[i]]++] = a[i]; 

 for (int i = 0; i < n; i++) 

    a[i] = aux[i];
copy 
back



Which of the following are properties of key-indexed counting?

A. Running time proportional to n + R.

B. Extra space proportional to n + R.

C. Stable.

D. All of the above.

   
               
               
Anderson  2       Harris    1
Brown     3       Martin    1
Davis     3       Moore     1
Garcia    4       Anderson  2
Harris    1       Martinez  2
Jackson   3       Miller    2
Johnson   4       Robinson  2
Jones     3       White     2
Martin    1       Brown     3
Martinez  2       Davis     3
Miller    2       Jackson   3
Moore     1       Jones     3
Robinson  2       Taylor    3
Smith     4       Williams  3
Taylor    3       Garcia    4
Thomas    4       Johnson   4
Thompson  4       Smith     4
White     2       Thomas    4
Williams  3       Thompson  4
Wilson    4       Wilson    4

Distributing the data (records with key 3 highlighted)

  count[]
1  2  3  4
0  3  8 14
0  4  8 14
0  4  9 14
0  4 10 14
0  4 10 15
1  4 10 15
1  4 11 15
1  4 11 16
1  4 12 16
2  4 12 16
2  5 12 16
2  6 12 16
3  6 12 16
3  7 12 16
3  7 12 17
3  7 13 17
3  7 13 18
3  7 13 19
3  8 13 19
3  8 14 19
3  8 14 20

 a[0]

 a[1]

 a[2]

 a[3]

 a[4]

 a[5]

 a[6]

 a[7]

 a[8]

 a[9]

a[10]

a[11]

a[12]

a[13]

a[14]

a[15]

a[16]

a[17]

a[18]

a[19]

aux[0]

aux[1]

aux[2]

aux[3]

aux[4]

aux[5]

aux[6]

aux[7]

aux[8]

aux[9]

aux[10]

aux[11]

aux[12]

aux[13]

aux[14]

aux[15]

aux[16]

aux[17]

aux[18]

aux[19]

for (int i = 0; i < N; i++)
   aux[count[a[i].key(d)]++] = a[i];

18

Radix sorting:  quiz 1

stability
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Least-significant-digit-first (LSD) radix sort

独Consider characters from right to left. 

独Stably sort using d th character as the key (using key-indexed counting).

20

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 d a b

1 c a b

2 f a d

3 b a d

4 d a d

5 e b b

6 a c e

7 a d d

8 f e d

9 b e d

10 f e e

11 b e e

sort key (d = 1)

0 a c e

1 a d d

2 b a d

3 b e d

4 b e e

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e d

11 f e e

sort key (d = 0)

0 d a b

1 c a b

2 e b b

3 a d d

4 f a d

5 b a d

6 d a d

7 f e d

8 b e d

9 f e e

10 b e e

11 a c e

sort is stable 

(arrows do not cross)

sort key (d = 2)

sorted!
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LSD string sort:  correctness proof

Proposition.  LSD sorts fixed-length strings in ascending order. 

 
Pf.  [ by induction on i ] 

独Inductive hypothesis: after pass i, strings are 
sorted by last i characters. 

独After pass i + 1, string are sorted by last 
i + 1 last characters. 

– if two strings differ on sort key, key-indexed 
counting puts them in proper relative order 

– if two strings agree on sort key, stability of 
key-indexed counting keeps them in proper 
relative order 

 
 
Proposition.  LSD sort is stable. 

Pf.  Key-indexed counting is stable.

0 d a b

1 c a b

2 f a d

3 b a d

4 d a d

5 e b b

6 a c e

7 a d d

8 f e d

9 b e d

10 f e e

11 b e e

sorted from 
previous passes 
(by induction)

0 a c e

1 a d d

2 b a d

3 b e d

4 b e e

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e d

11 f e e

sort key

after pass i
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LSD string sort (for fixed-length strings):  Java implementation

public class LSD  
{ 

   public static void sort(String[] a, int w) 
   { 
      int R = 256;  
      int n = a.length;  
      String[] aux = new String[n];  

      for (int d = w-1; d >= 0; d--)  
      { 
 
 
 
 
 
 
 
 
 
 
      } 
   } 
}

int[] count = new int[R+1]; 

for (int i = 0; i < n; i++) 

   count[a[i].charAt(d) + 1]++; 

for (int r = 0; r < R; r++) 

   count[r+1] += count[r]; 

for (int i = 0; i < n; i++) 

   aux[count[a[i].charAt(d)]++] = a[i]; 

for (int i = 0; i < n; i++) 

   a[i] = aux[i];

do key-indexed counting 
for each digit from right to left

key-indexed counting

radix R

fixed-length w strings



Summary of the performance of sorting algorithms

Frequency of operations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Q.  What if strings are not all of same length?

23

algorithm guarantee random extra space stable? operations on keys

insertion sort ½ n2 ¼ n2 1 ✔ compareTo()

mergesort n lg n n lg n n ✔ compareTo()

quicksort 1.39 n lg n * 1.39 n lg n c lg n compareTo()

heapsort 2 n lg n 2 n lg n 1 compareTo()

LSD sort † 2 w n 2 w n n + R ✔ charAt()

*  probabilistic 

†  fixed-length w keys
1 call to compareTo() can 

involve as many as 

w calls to charAt()



Which sorting method to use to sort 1 million 32-bit integers?

A. Insertion sort. 

B. Mergesort.

C. Quicksort.

D. Heapsort.

E. LSD radix sort.

24

Radix sorting:  quiz 2

01110110111011011101...1011101
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SORT ARRAY OF 128-BIT NUMBERS

Problem.  Sort huge array of random 128-bit numbers. 

Ex.  Supercomputer sort, internet router. 

Which sorting method to use? 

独Insertion sort. 

独Mergesort. 

独Quicksort. 

独Heapsort. 

独LSD radix sort.

01110110111011011101...1011101



ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ strings in Java 

‣ key-indexed counting 

‣ LSD radix sort 

‣ MSD radix sort 

‣ 3-way radix quicksort 

‣ suffix arrays

5.1  STRING SORTS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu


Reverse LSD

独Consider characters from left to right. 

独Stably sort using d th character as the key (using key-indexed counting).

30

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 b a d

1 c a b

2 d a b

3 d a d

4 f a d

5 e b b

6 a c e

7 a d d

8 b e e

9 b e d

10 f e e

11 f e d

sort key (d = 1)

0 c a b

1 d a b

2 e b b

3 b a d

4 d a d

5 f a d

6 a d d

7 b e d

8 f e d

9 a c e

10 b e e

11 f e e

sort key (d = 2)

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort key (d = 0)

not sorted!
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MSD string (radix) sort. 

独Partition array into R pieces according to first character. 
(use key-indexed counting) 

独Recursively sort all strings that start with each character. 
(key-indexed counts delineate subarrays to sort)

Most-significant-digit-first string sort

0 d a b

1 a d d

2 c a b

3 f a d

4 f e e

5 b a d

6 d a d

7 b e e

8 f e d

9 b e d

10 e b b

11 a c e

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort key

0 a d d

1 a c e

2 b a d

3 b e e

4 b e d

5 c a b

6 d a b

7 d a d

8 e b b

9 f a d

10 f e e

11 f e d

sort subarrays 

recursively

count[]

a 0

b 2

c 5

d 6

e 8

f 9

- 12



public static void sort(String[] a, int w)  
{ 
   aux = new String[a.length];  
   sort(a, aux, w, 0, a.length - 1, 0); 
} 

private static void sort(String[] a, String[] aux, int w, int lo, int hi, int d)  
{ 
   if (hi <= lo || d == w) return;  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
}

32

MSD string sort (for fixed-length strings):  Java implementation

int[] count = new int[R+1]; 

for (int i = lo; i <= hi; i++) 

   count[a[i].charAt(d) + 1]++; 

for (int r = 0; r < R; r++) 

   count[r+1] += count[r]; 

for (int i = lo; i <= hi; i++) 

   aux[count[a[i].charAt(d)]++] = a[i]; 

for (int i = lo; i <= hi; i++) 

   a[i] = aux[i - lo];

for (int r = 0; r < R; r++) 

   sort(a, aux, w, lo + count[r], lo + count[r+1] - 1, d+1);

sort R subarrays recursively

key-indexed counting

recycles aux[] array 
but not count[] array

fixed-length w strings



Variable-length strings

Treat strings as if they had an extra char at end (smaller than any char). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
C strings.  Have extra char '\0' at end  ⇒  no extra work needed.
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0 s e a -1

1 s e a s h e l l s -1

2 s e l l s -1

3 s h e -1

4 s h e -1

5 s h e l l s -1

6 s h o r e -1

7 s u r e l y -1

private static int charAt(String s, int d) 

{ 

   if (d < s.length()) return s.charAt(d); 

   else return -1; 

}

why smaller?

she before shells



Number of characters examined. 

独MSD examines just enough characters to sort the keys. 

独Number of characters examined depends on keys. 

独Can be sublinear in input size!
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 MSD string sort:  performance

compareTo() based sorts 

can also be sublinear!

1EIO402
1HYL490
1ROZ572
2HXE734
2IYE230
2XOR846
3CDB573
3CVP720
3IGJ319
3KNA382
3TAV879
4CQP781
4QGI284
4YHV229

1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377

Non-random
with duplicates
(nearly linear)

Random
(sublinear)

Worst case
(linear)

Characters examined by MSD string sort

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

1EIO402
1HYL490
1ROZ572
2HXE734
2IYE230
2XOR846
3CDB573
3CVP720
3IGJ319
3KNA382
3TAV879
4CQP781
4QGI284
4YHV229

1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377

Non-random
with duplicates
(nearly linear)

Random
(sublinear)

Worst case
(linear)

Characters examined by MSD string sort

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the

1EIO402
1HYL490
1ROZ572
2HXE734
2IYE230
2XOR846
3CDB573
3CVP720
3IGJ319
3KNA382
3TAV879
4CQP781
4QGI284
4YHV229

1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377
1DNB377

Non-random
with duplicates
(nearly linear)

Random
(sublinear)

Worst case
(linear)

Characters examined by MSD string sort

are
by
sea
seashells
seashells
sells
sells
she
she
shells
shore
surely
the
the



Summary of the performance of sorting algorithms

Frequency of operations. 
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algorithm guarantee random extra space stable? operations on keys

insertion sort ½ n2 ¼ n2 1 ✔ compareTo()

mergesort n lg n n lg n n ✔ compareTo()

quicksort 1.39 n lg n * 1.39 n lg n c lg n * compareTo()

heapsort 2 n lg n 2 n lg n 1 compareTo()

LSD sort † 2 w n 2 w n n + R ✔ charAt()

MSD sort ‡ 2 w n n logR n n + D R ✔ charAt()

*  probabilistic 

†  fixed-length w keys 

‡  average-length w keys

D = function-call stack depth 

(length of longest prefix match)



Optimization 0.  Cutoff to insertion sort. 

独MSD is much too slow for small subarrays. 

独Essential for performance. 

 
Optimization 1.  Replace recursion with explicit stack. 

独Push subarrays to be sorted onto stack. 

独One count[] array now suffices. 

 
Optimization 2.  Do R-way partitioning in place. 

独Eliminates aux[] array. 

独Sacrifices stability.
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Engineering a radix sort (American flag sort)

Engineering Radix Sort
Peter M. Mcllroy and Keith Bostic

University of California at Berkeley;

and M. Douglas Mcllroy
AT&T Bell Laboratories

ABSTRACT Radix sorting methods have excellent
asymptotic performance on string data, for which com-
parison is not a unit-time operation. Attractive for use
in large byte-addressable memories, these methods
have nevertheless long been eclipsed by more easily
prograÍrmed algorithms. Three ways to sort strings by
bytes left to right-a stable list sort, a stable two-array
sort, and an in-place "American flag" sor¿-are illus-
trated with practical C programs. For heavy-duty sort-
ing, all three perform comparably, usually running at
least twice as fast as a good quicksort. We recommend
American flag sort for general use.

@ Computing Systems, Vol. 6 . No. 1 . Winter 1993

American national flag problem Dutch national flag problem
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she 

sells 

seashells 

by 

the 

sea 

shore 

the 

shells 

she 

sells 

are 

surely 

seashells

Overview.  Do 3-way partitioning on the d th character. 

独Less overhead than R-way partitioning in MSD radix sort. 

独Does not re-examine characters equal to the partitioning char.  
(but does re-examine characters not equal to the partitioning char)
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3-way string quicksort

recursively sort subarrays, 
excluding first character 

for middle subarray

by 

are 

seashells 

she 

seashells 

sea 

shore 

surely 

shells 

she 

sells 

sells 

the 

the

partitioning item 

use first character to 

partition into 

“less”, “equal”, and “greater” 

subarrays



she 

sells 

seashells 

by 

the 

sea 

shore 

the 

shells 

she 

sells 

are 

surely 

seashells
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3-way string quicksort:  trace of recursive calls

by 

are 

seashells 

she 

seashells 

sea 

shore 

surely 

shells 

she 

sells 

sells 

the 

the

Trace of first few recursive calls for 3-way string quicksort (subarrays of length 1 not shown)

partitioning item

are 

by 

seashells 

she 

seashells 

sea 

shore 

surely 

shells 

she 
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sells 

the 

the

are 

by 

seashells  

sea 

seashells 

sells 

sells 

shells 

she 

surely 

shore 

she 

the 

the

are 

by 

seashells 

sells 

seashells  

sea 

sells 

shells 

she 

surely 

shore 

she 

the 

the



 private static void sort(String[] a)  
 {  sort(a, 0, a.length - 1, 0);  }  

 private static void sort(String[] a, int lo, int hi, int d) 
 { 

    if (hi <= lo) return; 

    int v = charAt(a[lo], d); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 }

int lt = lo, gt = hi; 

int i = lo + 1; 

while (i <= gt) 

{ 

   int c = charAt(a[i], d); 

   if      (c < v) exch(a, lt++, i++); 

   else if (c > v) exch(a, i, gt--); 

   else            i++; 

}
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3-way string quicksort:  Java implementation

3-way partitioning 
(using d th character)

sort(a, lo, lt-1, d); 

if (v != -1) sort(a, lt, gt, d+1); 

sort(a, gt+1, hi, d);

sort 3 subarrays recursively

to support variable-length strings



Standard quicksort. 

独Uses ~ 2 n ln n string compares on average. 

独Costly for keys with long common prefixes (and this is a common case!) 

 
3-way string (radix) quicksort. 

独Uses ~ 2 n ln n character compares on average for random strings. 

独Avoids re-comparing long common prefixes.
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3-way string quicksort vs. standard quicksort

Jon L. Bentley* Robert Sedgewick# 

Abstract 
We present theoretical algorithms for sorting and 

searching multikey data, and derive from them practical C 
implementations for applications in which keys are charac- 
ter strings. The sorting algorithm blends Quicksort and 
radix sort; it is competitive with the best known C sort 
codes. The searching algorithm blends tries and binary 
search trees; it is faster than hashing and other commonly 
used search methods. The basic ideas behind the algo- 
rithms date back at least to the 1960s but their practical 
utility has been overlooked. We also present extensions to 
more complex string problems, such as partial-match 
searching. 

1. Introduction 
Section 2 briefly reviews Hoare’s [9] Quicksort and 

binary search trees. We emphasize a well-known isomor- 
phism relating the two, and summarize other basic facts. 

The multikey algorithms and data structures are pre- 
sented in Section 3. Multikey Quicksort orders a set of II 
vectors with k components each. Like regular Quicksort, it 
partitions its input into sets less than and greater than a 
given value; like radix sort, it moves on to the next field 
once the current input is known to be equal in the given 
field. A node in a ternary search tree represents a subset of 
vectors with a partitioning value and three pointers: one to 
lesser elements and one to greater elements (as in a binary 
search tree) and one to equal elements, which are then pro- 
cessed on later fields (as in tries). Many of the structures 
and analyses have appeared in previous work, but typically 
as complex theoretical constructions, far removed from 
practical applications. Our simple framework opens the 
door for later implementations. 

The algorithms are analyzed in Section 4. Many of the 
analyses are simple derivations of old results. 

Section 5 describes efficient C programs derived from 
the algorithms. The first program is a sorting algorithm 

Fast Algorithms for Sorting and Searching Strings 

that is competitive with the most efficient string sorting 
programs known. The second program is a symbol table 
implementation that is faster than hashing, which is com- 
monly regarded as the fastest symbol table implementa- 
tion. The symbol table implementation is much more 
space-efficient than multiway trees, and supports more 
advanced searches. 

In many application programs, sorts use a Quicksort 
implementation based on an abstract compare operation, 
and searches use hashing or binary search trees. These do 
not take advantage of the properties of string keys, which 
are widely used in practice. Our algorithms provide a nat- 
ural and elegant way to adapt classical algorithms to this 
important class of applications. 

Section 6 turns to more difficult string-searching prob- 
lems. Partial-match queries allow “don’t care” characters 
(the pattern “so.a”, for instance, matches soda and sofa). 
The primary result in this section is a ternary search tree 
implementation of Rivest’s partial-match searching algo- 
rithm, and experiments on its performance. “Near neigh- 
bor” queries locate all words within a given Hamming dis- 
tance of a query word (for instance, code is distance 2 
from soda). We give a new algorithm for near neighbor 
searching in strings, present a simple C implementation, 
and describe experiments on its efficiency. 

Conclusions are offered in Section 7. 

2. Background 
Quicksort is a textbook divide-and-conquer algorithm. 

To sort an array, choose a partitioning element, permute 
the elements such that lesser elements are on one side and 
greater elements are on the other, and then recursively sort 
the two subarrays. But what happens to elements equal to 
the partitioning value? Hoare’s partitioning method is 
binary: it places lesser elements on the left and greater ele- 
ments on the right, but equal elements may appear on 
either side. 

* Bell Labs, Lucent Technologies, 700 Mountam Avenue, Murray Hill. 
NJ 07974; jlb@research.bell-labs.com. 

# Princeton University. Princeron. NJ. 08514: rs@cs.princeton.edu. 

Algorithm designers have long recognized the desir- 
irbility and difficulty of a ternary partitioning method. 
Sedgewick [22] observes on page 244: “Ideally, we would 
llke to get all [equal keys1 into position in the file, with all 

360 
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3-way string quicksort vs. MSD string sort

MSD string sort. 

独Is cache-inefficient. 

独Too much memory storing count[]. 

独Too much overhead reinitializing count[] and aux[]. 

 
 
3-way string quicksort. 

独Is in-place. 

独Is cache-friendly. 

独Has a short inner loop. 

独But not stable. 

 
 
 
 
Bottom line.  3-way string quicksort is method of choice for sorting strings.

library of Congress call numbers



Summary of the performance of sorting algorithms

Frequency of operations. 
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algorithm guarantee random extra space stable? operations on keys

insertion sort ½ n2 ¼ n2 1 ✔ compareTo()

mergesort n lg n n lg n n ✔ compareTo()

quicksort 1.39 n lg n * 1.39 n lg n c lg n * compareTo()

heapsort 2 n lg n 2 n lg n 1 compareTo()

LSD sort † 2 w n 2 W n n + R ✔ charAt()

MSD sort ‡ 2 w n n logR n n + D R ✔ charAt()

3-way string 
quicksort 1.39 w n lg R * 1.39 n lg n log n + w * charAt()

*  probabilistic 

†  fixed-length w keys 

‡  average-length w keys
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Given a text of n characters, preprocess it to enable fast substring search  
(find all occurrences of query string context).

% more tale.txt 
it was the best of times 

it was the worst of times 

it was the age of wisdom 

it was the age of foolishness 

it was the epoch of belief 

it was the epoch of incredulity 

it was the season of light 

it was the season of darkness 

it was the spring of hope 

it was the winter of despair 

    ⋮ 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Keyword-in-context search



Given a text of n characters, preprocess it to enable fast substring search  
(find all occurrences of query string context). 
 
 
 
 
 
 
 
 
 
 
 
 

Applications.  Linguistics, databases, web search, word processing, ….

% java KWIC tale.txt 15 
search 
o st giless to search for contraband 

her unavailing search for your fathe 

le and gone in search of her husband 

t provinces in search of impoverishe 

 dispersing in search of other carri 

n that bed and search the straw hold 

better thing 
t is a far far better thing that i do than 

 some sense of better things else forgotte 

was capable of better things mr carton ent 

46

Keyword-in-context search

number of characters of 
surrounding context
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Suffix sort

i t w a s b e s t i t w a s w

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

input string

0 i t w a s b e s t i t w a s w

1 t w a s b e s t i t w a s w

2 w a s b e s t i t w a s w

3 a s b e s t i t w a s w

4 s b e s t i t w a s w

5 b e s t i t w a s w

6 e s t i t w a s w

7 s t i t w a s w

8 t i t w a s w

9 i t w a s w

10 t w a s w

11 w a s w

12 a s w

13 s w

14 w

form su"xes

3 a s b e s t i t w a s w

12 a s w

5 b e s t i t w a s w

6 e s t i t w a s w

0 i t w a s b e s t i t w a s w

9 i t w a s w

4 s b e s t i t w a s w

7 s t i t w a s w

13 s w

8 t i t w a s w

1 t w a s b e s t i t w a s w

10 t w a s w

14 w

2 w a s b e s t i t w a s w

11 w a s w

sort su"xes to bring query strings together

array of suffix indices 

in sorted order



独Preprocess:  suffix sort the text. 

独Query:  binary search for query; scan until mismatch.
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Keyword-in-context search:  suffix-sorting solution

⋮
632698 s e a l e d _ m y _ l e t t e r _ a n d _ …

713727 s e a m s t r e s s _ i s _ l i f t e d _ …

660598 s e a m s t r e s s _ o f _ t w e n t y _ …

67610 s e a m s t r e s s _ w h o _ w a s _ w i …

4430 s e a r c h _ f o r _ c o n t r a b a n d …

42705 s e a r c h _ f o r _ y o u r _ f a t h e …

499797 s e a r c h _ o f _ h e r _ h u s b a n d …

182045 s e a r c h _ o f _ i m p o v e r i s h e …

143399 s e a r c h _ o f _ o t h e r _ c a r r i …

411801 s e a r c h _ t h e _ s t r a w _ h o l d …

158410 s e a r e d _ m a r k i n g _ a b o u t _ …

691536 s e a s _ a n d _ m a d a m e _ d e f a r …

536569 s e a s e _ a _ t e r r i b l e _ p a s s …

484763 s e a s e _ t h a t _ h a d _ b r o u g h …

⋮

KWIC search for “search” in Tale of Two Cities
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War story

Q.  How to efficiently form (and sort) the n suffixes?

String[] suffixes = new String[n]; 

for (int i = 0; i < n; i++) 

    suffixes[i] = s.substring(i, n); 

Arrays.sort(suffixes);
ROBERT SEDGEWICK  |  KEVIN WAYNE

F O U R T H  E D I T I O N

Algorithms

3rd printing (2012)

input file characters Java 7u5 Java 7u6

amendments.txt 18 K 0.25 sec 2.0 sec

aesop.txt 192 K 1.0 sec out of memory

mobydick.txt 1.2 M 7.6 sec out of memory

chromosome11.txt 7.1 M 61 sec out of memory



How much memory as a function of n?
 

A. 1 

B. n

C. n log n

D. n2

50

Radix sorting:  quiz 3

String[] suffixes = new String[n]; 

for (int i = 0; i < n; i++) 

    suffixes[i] = s.substring(i, n); 

Arrays.sort(suffixes);
ROBERT SEDGEWICK  |  KEVIN WAYNE

F O U R T H  E D I T I O N

Algorithms

3rd printing (2012)

Java 7u5

Java 7u6
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The String data type:  Java 7u5 implementation

public final class String implements Comparable<String> 

{ 

   private char[] value;  // characters 

   private int offset;    // index of first char in array 

   private int length;    // length of string 

   private int hash;      // cache of hashCode() 

   …

H E L L O , W O R L D

0 1 2 3 4 5 6 7 8 9 10 11

value[]

offset = 0

length = 12String s = "Hello, World";

H E L L O , W O R L D

0 1 2 3 4 5 6 7 8 9 10 11

value[]

offset = 7

length = 5
String t = s.substring(7, 12);

(constant extra memory)
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The String data type:  Java 7u6 implementation

public final class String implements Comparable<String> 

{ 

   private char[] value;  // characters 

   private int hash;      // cache of hashCode() 

   …

H E L L O , W O R L D

0 1 2 3 4 5 6 7 8 9 10 11

value[]

String s = "Hello, World";

W O R L D

0 1 2 3 4

value[]

String t = s.substring(7, 12);
(linear extra memory)
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The String data type:  performance

String data type (in Java).  Sequence of characters (immutable). 

Java 7u5.  Immutable char[] array, offset, length, hash cache. 

Java 7u6.  Immutable char[] array, hash cache.

operation Java 7u5 Java 7u6

length 1 1

indexing 1 1

concatenation m + n m + n

substring extraction 1 n

immutable? ✔ ✔

memory 64 + 2n 56 + 2n
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A Reddit exchange

I'm the author of the substring() change. As has 

been suggested in the analysis here there were two 

motivations for the change 

• Reduce the size of String instances. Strings 

are typically 20-40% of common apps footprint. 

• Avoid memory leakage caused by retained 

substrings holding the entire character array.

bondolo

http://www.reddit.com/r/programming/comments/1qw73v/til_oracle_changed_the_internal_string

Changing this function, in a bugfix release no 

less, was totally irresponsible. It broke backwards 

compatibility for numerous applications with errors 

that didn't even produce a message, just freezing 

and timeouts...  All pain, no gain. Your work was 

not just vain, it was thoroughly destructive, even 

beyond its immediate effect.

cypherpunks
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Suffix sort

Q.  How to efficiently form (and sort) suffixes in Java 7u6? 

A.  Define Suffix class ala Java 7u5 String representation.

public class Suffix implements Comparable<Suffix> 

{ 

   private final String text; 

   private final int offset; 

   public Suffix(String text, int offset) 

   { 

      this.text = text; 

      this.offset = offset; 

   } 

   public int length()               { return text.length() - offset;   } 

   public char charAt(int i)         { return text.charAt(offset + i);  } 

   public int compareTo(Suffix that) { /* see textbook */               } 

}

H E L L O , W O R L D

0 1 2 3 4 5 6 7 8 9 10 11

text[]

offset
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Suffix sort

Q.  How to efficiently form (and sort) suffixes in Java 7u6? 

A.  Define Suffix class ala Java 7u5 String representation. 

 
 
 
 
 
 
 
 
 
Optimizations.  [5⇥ faster and 32⇥ less memory than Java 7u5 version] 

独Use 3-way string quicksort instead of Arrays.sort().  

独Manipulate suffix offsets directly instead of via explicit Suffix objects.

Suffix[] suffixes = new Suffix[n]; 

for (int i = 0; i < n; i++) 

    suffixes[i] = new Suffix(s, i); 

Arrays.sort(suffixes);
ROBERT SEDGEWICK  |  KEVIN WAYNE

F O U R T H  E D I T I O N

Algorithms

4th printing (2013)



Conjecture.  [Knuth 1970]  No linear-time algorithm. 

 
Proposition.  [Weiner 1973]  Linear-time algorithms (suffix trees).
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Suffix arrays:  theory

LINEAR PATTERN MATCHING ALGORITHMS

Peter Weiner

*The Rand Corporation, Santa Monica, California

Abstract

In 1970, Knuth, Pratt, and Morris [1] showed how to do basic pattern matching
in linear time. Related problems, such as those discussed in [4], have pre-
viously been solved by efficient but sub-optimal algorithms. In this paper, we
introduce an interesting data structure called a bi-tree. A linear time algo-
rithm "for obtaining a compacted version of a bi-tree associated with a given
string is presented. With this construction as the basic tool, we indicate how
to solve several pattern matching problems, including some from [4], in linear
time.

I. Introduction

In 1970, Knuth, Morris, and Pratt [1-2] showed how to
match a given pattern into another given string in time
proportional to the sum of the lengths of the pattern
and string. Their algorithm was derived from a result
of Cook [3] that the 2-way deterministic pushdown lan-
guages are recognizable on a random access machine in
time O(n). Since 1970, attention has been given to
several related problems in pattern matching [4-6], but
the algorithms developed in these investigations us-
ually run in time which is slightly worse than linear,
for example O(n log n). It is of considerable interest
to either establish that there exists a non-linear
lower bound on the run time of all algorithms which
solve a given pattern matching problem, or to exhibit
an algorithm whose run time is of O(n).

In the following sections, we introduce an inter-
esting data structure, called a bi-tree, and show how
an efficient calculation of a bi-tree can be applied to
the linear-time (and linear-space) solution of several
pattern matching problems.

II. Strings, Trees, and Bi-Trees

In this paper, both patterns and strings are finite
length, fully specified sequences of symbols over a
finite alphabet [ = {al ,a2 , ... ,at }. Such a pattern of
length m will be denoted as

P = P (1) P (2) ... P (m ),

where P(i), an element of [, is the i th symbol in the
sequence, and is said to be located in the i th position.
To represent the substring of characters which begins
at position i of P and ends at position j, we write
P (i: j). That is, when i j, P (i: j ) = P (i) ... P (j ),
and P(i:j) = A, the null string, for i > j.

Let [* denote the set of all finite length strings
over [. strings WI and w2 in [* may be combined by
the operation of concatenation to form a new string
W = WI w2 . The reverse of a string P = A (1) ... A (m)
is the s t r ing pr = A (m) ... A (1 ).

The length of a string or pattern, denoted by 19(w)
for W E [*, is the number of symbols in the sequence.
For example, 19(P(i:j» = j-i+l if i j and is 0 if
i > j.

Informally, a bi-tree over [ can be thought of as
two related t-ary trees sharing a common node set.

*This work was partially supported by grants from
the Alfred P. Sloan Foundation and the Exxon Education
Foundation. P. Weiner was at Yale University when this
work was done.

Before giving a formal definition of a bi-tree, we re-
view basic definitions and terminology concerning t-ary
trees. (See Knuth [7] for further details.)

A t-ary tpee T over [ = {al, ... ,at } is a set of
nodes N which is either empty or consists of a poot,
nO E N, and t ordered, disjoint t-arY trees.

Clearly, every node ni E N is the root of some
t-ary tree T i which itself consists of n1 and t ordered,

iiidisjoint t-ary trees, say Tl , T2 , Tt • We call the
iiitree Tj a sub-tpee of T ; also, .all sub-trees of Tj are

considered to be sub-trees of T1 • It is natural to
associate with a tree T a successor function

S: NX[ (N-{nO}) U {NIL}

defined for ni E Nand a j E L by

ni , the root of if is non-empty
s(ni'Oj) = {NIL if is empty.

It is easily seen that this function completely deter-
mines a t-ary tree and we write T = (N, nO'S).

If n' = S(n,a), we say that nand n' are connected
by a bpanah from n to n f which has a label of o. wet
call n' a son of n, and n the father of n'. The degree
of a node n is the number of sons of that node, that is,
the number of distinct a for which S(n,a) NIL. A node
of degree 0 is a leaf of the tree.

It is useful to extend the domain of S from Nx[
to (N U {NIL}) x [* (and extend the range to include
nO) by the inductive definition

(Sl) S(NIL,w) NIL for all w E [*
(S2) S(n,A) = n for all n E N
(S3) S(n,u.xJ) = S(S(n,w),a) for all n EN, w E L*,

and a E L:.

Not every S: Nx[ (N-{nO}) U {NIL} is the successor
function of a t-ary tree. But a necessary and suffi-
cient condition for S to be a successor function of
some (unique, if it exists) t-ary tree can be expressed
in terms of the extended S. Namely, that there exists
exactly one choice of w such that S(nO'w} n for every
n E N. there exists a T such that T = (N,nO'S),
we say that S is

We may also associate with T a father function
F: N N defined by F(nO) = nO and for n' E N-{nO}'

F (n ') = n ¢) S (n ,a) = n' for s orne a E [.

“ has no practical virtue… but a historic   
  monument in the area of string processing. ”
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Abstract.

An on–line algorithm is presented for constructing the su�x tree for a

given string in time linear in the length of the string. The new algorithm has

the desirable property of processing the string symbol by symbol from left to

right. It has always the su�x tree for the scanned part of the string ready.

The method is developed as a linear–time version of a very simple algorithm

for (quadratic size) su�x tries. Regardless of its quadratic worst-case this

latter algorithm can be a good practical method when the string is not too

long. Another variation of this method is shown to give in a natural way the

well–known algorithms for constructing su�x automata (DAWGs).

Key Words. Linear time algorithm, su�x tree, su�x trie, su�x automa-

ton, DAWG.
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A Space-Economical Suffix Tree Construction Algorithm 

E D W A R D  M. M O C R E I G H T  

Xerox Polo Alto Research Center, Palo Alto, California 

AaSTRXCeV. A new algorithm is presented for constructing auxiliary digital search trees to aid in 
e x a c t - m a t c h  substrlng searching. This algorithm has the same asymptotic running time bound as 
previously published algorithms, but is more economical in space. Some implementation considera- 
tions are discussed, and new work on the modification of these search trees in response to incremental 
changes in the strings they index (the update problem) is presented.  

KEY WORDS AND PHRASES: pattern matching algorithms, searching, search trees, context search, 
substring search, analysis of algorithms 

ca CATEGORIES: 3.74, 4 34, 5 32 

Introduction 

A number of computer applications need a basic function which locates a specific sub- 
string of characters within a longer main string. The most obvious such application is 
context searching within a text editor. Other applications include automatic command 
completion by  the keyboard handling executive of an operating system, and limited 
pattern matching used in speech recognition [2]. This basic function is also useful as a 
building block in the construction of more sophisticated pattern matches. 

The naive algorithm to implement this function simply at tempts to match the sub- 
string against the main string in all possible alignments. I t  is straightforward but  can 
be slow since, for example, the program might reverify the fact tha t  position 17 in the 
main string is the character a almost as often as the number of characters in the substring 
(consider the substring a a a a a a a b ) .  An asymptotically more efficient algorithm was 
discovered by Knuth,  Pratt ,  and Morris in 1970 [5]. I t  involves preprocessing the sub- 
string into a search automaton and then feeding the main string into the search auto- 
maton, one character at a time. In  both of these algorithms the average search time is at 
least linear in the length of the main string. 

I f  one were expecting to do many substring searches in the same main string, it would 
be worthwhile to build an auxiliary index to that  main string to aid in the searches. A 
useful index structure which can be constructed in time linear in the length of the main 
string, and yet  which enables substring searches to be completed in time linear in the 
length of the substring, was first discovered by Weiner [8]. 

In  addition, his auxiliary index structure permits one easily to answer several new 
questions about the main string itself. For example, what is the longest substring of the 
main string which occurs in two places? in k places? One can also transmit (or store) a 
message with excerpts from the main string in minimum time (or spaco) by a dynamic 
programming process which for each position of the message finds the longest excerpt of 
the message which begins there and is a substring of the main string. This latter app}i- 
cation motivated Weiner's original discovery. 
Copyright (~) 1976, Association for Computing Machinery, Inc. General permission to republish, 
but not for profit, all or part of this material is granted provided that ACM's copyright notice is 
given and that reference is made to the publication, to its date of issue, and to  the  fact  that  reprinting 
privileges were granted by permission of the  Assoc iat ion  for Computing Machinery. 
Author's address" Xerox Polo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304. 

Jouraal of the Amociation for Computing Machinery, Vol. 23, No. 2, April 1976, pp. 262-272. 
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Suffix arrays:  practice

Applications.  Bioinformatics, information retrieval, data compression, … 

 
Many ingenious algorithms. 

独Constants and memory footprint very important. 

独State-of-the art still changing.

year algorithm worst case memory

1991 Manber–Myers n log n 8 n

1999 Larsson-Sadakane n log n 8 n

2003 Kärkkäinen-Sanders n 13 n

2003 Ko-Aluru n 10 n

2008 divsufsort2 n log n 5 n

2010 sais n 6 n

good choices 
(libdivsufsort)

about 10⇥ faster 
than Manber–Myers

see lecture videos
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String sorting summary

We can develop linear-time sorts.  

独︎Key compares not necessary for string keys.  

独︎Use characters as index in an array.  
  

We can develop sublinear-time sorts.  

独︎Input size is number of characters (not number of strings).  

独︎Not all of the characters have to be examined.  
  

Long strings are rarely random in practice.  

独︎Goal is often to learn the structure!  

独May need specialized algorithms.


