[^0]
4.4 Shortest Paths

- properties
- APls
- Bellman-Ford algorithm
- Dijkstra's algorithm
- seam carving
https://algs4.cs.princeton.edu

Shortest paths in an edge-weighted digraph
Given an edge-weighted digraph, find the shortest path from s to t.

edge-weighted digr	
$4->5$	0.35
$5->4$	0.35
$4->7$	0.37
$5->7$	0.28
$7->5$	0.28
$5->1$	0.32
$0->4$	0.38
$0->2$	0.26
$7->3$	0.39
$1->3$	0.29
$2->7$	0.34
$6->2$	0.40
$3->6$	0.52
$6->0$	0.58
$6->4$	0.93

$$
\begin{array}{cc}
\text { shortest path from } 0 \text { to } 6 & \text { length of path }=1.51 \\
0 \rightarrow 2 \rightarrow 7 \rightarrow 3 \rightarrow 6 & (0.26+0.34+0.39+0.52)
\end{array}
$$

Google maps

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving. \longleftarrow see Assignment 7
- Texture mapping.
- Robot navigation.
- Typesetting in T_{E}.
- Currency exchange.

https://en.wikipedia.org/wiki/Seam_carving
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Optimal truck routing through given traffic congestion pattern.

Shortest path variants

Which vertices?

- Single source: from one vertex s to every other vertex.
- Single sink: from every vertex to one vertex t.
- Source-sink: from one vertex s to another t.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Non-negative weights. (except as noted)
- Euclidean weights.
- Arbitrary weights.

Cycles?

- No directed cycles.
- No "negative cycles."

Simplifying assumption. Each vertex is reachable from s.

Shortest paths: quiz 1

Which variant in car GPS?

A. Single source: from one vertex s to every other vertex.
B. Single destination: from every vertex to one vertex t.
C. Source-destination: from one vertex s to another t.
D. All pairs: between all pairs of vertices.

4.4 Shortest Paths

- properties

Algorithms

Robert Sedgewick | Kevin Wayne

- Bellman-Ford algorithm

- Diikstra's algorithm
seam carving
https://algs4.cs.princeton.edu

Data structures for single-source shortest paths

Goal. Find a shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent a SPT with two vertex-indexed arrays:

- distTo $[v]$ is length of a shortest path from s to v.
- edgeTo[v] is last edge on a shortest path from s to v.

shortest-paths tree from 0

	distTo[]	edgeTo[]
0	0	null
1	1.05	$5->1$
2	0.32	
2	0.26	$0->2$

parent-link representation

Edge relaxation

Relax edge $e=v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo [w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e=v \rightarrow w$ yields shorter path to w, update distTo[w] and edgeTo[w].

```
relax edge e=v ww
```


Shortest paths: quiz 2
What are the values of distTo[v] and distTo[w] after relaxing $e=v \rightarrow w$?
A. $\quad 10.0$ and 15.0
B. $\quad 10.0$ and 17.0
C. $\quad 12.0$ and 15.0
D. $\quad 12.0$ and 17.0

Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] $=\infty$.
For each vertex v: edgeTo[v] = null.
distTo[s] $=0$.
Repeat until done:

- Relax any edge.
no repeated vertices
Key properties.
- distTo[v] is the length of a simple path from s to v.
- distTo[v] does not increase.

Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] $=\infty$.
For each vertex v: edgeTo[v] = null.
distTo[s] $=0$.
Repeat until done:

- Relax any edge.

Efficient implementations.

- Which edge to relax next?
- How many edge relaxations needed?

Ex 1. Bellman-Ford algorithm.
Ex 2. Dijkstra's algorithm.
Ex 3. Topological sort algorithm.

4.4 Shortest Paths

- properties
- APls

Algorithms

Robert Sedgewick | Kevin Wayne

- Bellman-Ford algorithm

Diikstra's algorithm
seam carving

Weighted directed edge API

```
public class DirectedEdge
```

DirectedEdge(int v, int w, double weight)	weighted edge $v \rightarrow w$
int from()	vertex v
int to()	vertex w
double weight()	weight of this edge

Relaxing an edge $e=v \rightarrow w$.

```
private void relax(DirectedEdge e)
{
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight())
    {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```


Weighted directed edge: implementation in Java

API. Similar to Edge for undirected graphs, but a bit simpler.

```
public class DirectedEdge
{
    private final int v, w;
    private final double weight;
    public DirectedEdge(int v, int w, double weight)
    {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }
    public int from()
    { return v; }
    public int to()
    { return w; }
    public double weight()
    { return weight; }
}
```


Edge-weighted digraph API

API. Same as EdgeWeightedGraph except with DirectedEdge objects.

public class EdgeWeightedDigraph	
EdgeWeightedDigraph(int V)	edge-weighted digraph with V vertices
void addEdge(DirectedEdge e)	add weighted directed edge e
Iterable<DirectedEdge> adj(int v)	
int $V()$	edges incident from v

Edge-weighted digraph: adjacency-lists representation

Edge-weighted digraph: adjacency-lists implementation in Java

Implementation. Almost identical to EdgeWeightedGraph.

```
public class EdgeWeightedDigraph
{
    private final int V;
    private final Bag<DirectedEdge>[] adj;
    public EdgeWeightedDigraph(int V)
    {
        this.V = V;
        adj = (Bag<Edge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
        adj[v] = new Bag<DirectedEdge>();
    }
    public void addEdge(DirectedEdge e)
    {
        int v = e.from(), w = e.to(); add edge e = v }->\textrm{w}\mathrm{ to
        adj[v].add(e);
    }
    public Iterable<DirectedEdge> adj(int v)
    { return adj[v]; }
}
```


Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

```
public class SP
```

SP(EdgeWeightedDigraph G, int s) shortest paths from s in digraph G double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v)
boolean hasPathTo(int v)
shortest path from s to v
is there a path from s to v ?

4.4 Shortest Paths

Algorithms

Robert Sedgewick | Kevin Wayne

- properties
- AP1s
- Bellman-Ford algorithm
- Bijkstra's algorithm
- seam carying

Bellman-Ford algorithm

Bellman-Ford algorithm

For each vertex v: distTo[v] $=\infty$.
For each vertex v: edgeTo[v] = null.
distTo[s] $=0$.
Repeat V-1 times:

- Relax each edge.

```
for (int i = 1; i < G.V(); i++)
    for (int v = 0; v < G.V(); v++)
        for (DirectedEdge e : G.adj(v))
        relax(e);
```

Running time. Order of growth is $E \times V$ in both best- and worst-case.

Bellman-Ford algorithm demo

Repeat $V-1$ times: relax all E edges.

Bellman-Ford algorithm demo

Repeat $V-1$ times: relax all E edges.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	$0 \rightarrow 1$
2	14.0	$5 \rightarrow 2$
3	17.0	$2 \rightarrow 3$
4	9.0	$0 \rightarrow 4$
5	13.0	$4 \rightarrow 5$
6	25.0	$2 \rightarrow 6$
7	8.0	$0 \rightarrow 7$

shortest-paths tree from vertex s

Bellman-Ford algorithm: visualization

Bellman-Ford algorithm: correctness proof

Proposition. Let $s=v_{0} \rightarrow v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{k}=v$ be a shortest path from s to v.
Then, after pass i, distTo $\left[v_{i}\right]=d^{*}\left(v_{i}\right)$.

Pf. [by induction on i]

- Inductive hypothesis: after pass i, $\operatorname{distTo}\left[v_{i}\right]=d^{*}\left(v_{i}\right)$.
- Since distTo $\left[v_{i+1}\right]$ is the length of some path from s to v_{i+1}, we must have distTo $\left[v_{i+1}\right] \geq d^{*}\left(v_{i+1}\right)$.
- Immediately after relaxing edge $v_{i} \rightarrow v_{i+1}$ in pass $i+1$, we have

$$
\begin{aligned}
\operatorname{distTo}\left[v_{i+1}\right] & \leq \operatorname{distTo}\left[v_{i}\right]+\operatorname{weight}\left(v_{i}, v_{i+1}\right) \\
& =d^{*}\left(v_{i}\right)+\operatorname{weight}\left(v_{i}, v_{i+1}\right) \\
& =d^{*}\left(v_{i+1}\right) .
\end{aligned}
$$

- Thus, at the end of pass $i+1$, $\operatorname{distTo}\left[v_{i+1}\right]=d^{*}\left(v_{i+1}\right)$.

Corollary. Bellman-Ford computes shortest path distances.
Pf. There exists a shortest path from s to v with at most $V-1$ edges.
$\Rightarrow \leq V-1$ passes suffice.

Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax any edge incident from v in pass $i+1$.

Queue-based implementation of Bellman-Ford. Maintain queue of vertices
whose distTo[] values needs updating.

each vertex on queue
at most once

relax in pass i

Impact.

- In the worst case, the running time is still proportional to $E \times V$.
- But much faster in practice on typical inputs.

LONGEST PATH

Problem. Given a digraph G with positive edge weights and vertex s, find a longest simple path from s to every other vertex.

Goal. Design algorithm with $E \times V$ running time.

longest simple path from 0 to 4 : $0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4$

Bellman-Ford algorithm: negative weights

Remark. The Bellman-Ford algorithm works even if some weights are negative, provided there are no negative cycles.

Negative cycle. A directed cycle whose length is negative.

length of negative cycle $=1+2+3+-8=-2$

Negative cycles and shortest paths. Length of path can be made arbitrarily negative by using negative cycle.

$$
0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \cdots \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1 \rightarrow 2 \rightarrow 5
$$

4.4 Shortest Paths

Algorithms

Robert Sedgewick | Kevin Wayne

- properties

- Dijkstra's algorithm

seam carying

https://algs4.cs.princeton.edu

Edsger W. Dijkstra: select quotes

Edsger W. Dijkstra: select quotes

" Do only what only you can do."
" The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence."
" It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration."
" APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums."

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

shortest-paths tree from vertex s

Dijkstra's algorithm visualization

Dijkstra's algorithm visualization

Dijkstra's algorithm: correctness proof

Invariant. For each vertex v in T, $\operatorname{distTo}[v]=d^{*}(v)$.

Pf. [by induction on $|T|$]

- Let w be next vertex added to T.
- Let P be the $s \rightarrow w$ path of length distTo[w].
- Consider any other $s \rightarrow w$ path P^{\prime}.
- Let $x \rightarrow y$ be first edge in P^{\prime} that leaves T.
- P^{\prime} is no shorter than P :

length $(P)=$ distTo $[w]$
$\begin{aligned} & \text { Dijkstra chose } \\ & w \text { instead of } y\end{aligned} \longrightarrow \leq$ distTo[y]
relax vertex $x \longrightarrow \leq \operatorname{distTo}[x]+\operatorname{weight}(x, y)$
induction $\longrightarrow=d^{*}(x)+w e i g h t(x, y)$
$\begin{gathered}\text { weights are } \\ \text { non-negative }\end{gathered} \longrightarrow \leq \operatorname{length}\left(P^{\prime}\right)$.

Dijkstra's algorithm: correctness proof

Invariant. For each vertex v in T, $\operatorname{distTo}[v]=d^{*}(v)$.
length of shortest $s \rightarrow v$ path

Corollary. Dijkstra's algorithm computes shortest path distances. Pf. Upon termination, T contains all vertices (reachable from s).

Dijkstra's algorithm: Java implementation

```
public class DijkstraSP
{
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    private IndexMinPQ<Double> pq; «
    (stay tuned)
    pub1ic DijkstraSP(EdgeWeightedDigraph G, int s)
    {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());
        for (int v = 0; v < G.V(); v++)
            distTo[v] = Doub7e.POSITIVE_INFINITY;
        distTo[s] = 0.0;
        pq.insert(s, 0.0);
        while (!pq.isEmpty())
        {
            int v = pq.de\Min();
```


relax vertices in order
for (DirectedEdge e : G.adj(v))
relax(e);
}
}
}

```

\section*{Dijkstra's algorithm: Java implementation}

When relaxing an edge, also update PQ:
- Found first path from \(s\) to \(w\) : add \(w\) to PQ.
- Found better path from \(s\) to \(w\) : decrease key of \(w\) in PQ.
```

private void relax(DirectedEdge e)
{
int v = e.from(), w = e.to();
if (distTo[w] > distTo[v] + e.weight())
{
distTo[w] = distTo[v] + e.weight();
edgeTo[w] = e;
if (!pq.contains(w)) pq.insert(w, distTo[w]);
else pq.decreaseKey(w, distTo[w]);
\longleftarrowupdate PQ
}
}

```

\section*{Indexed priority queue (Section 2.4)}

Associate an index between 0 and \(n-1\) with each key in a priority queue.
- Insert a key associated with a given index.
- Delete a minimum key and return associated index.
- Decrease the key associated with a given index.
for Dijkstra's algorithm:
index = vertex
key \(=\) distance from \(s\)
```

public class IndexMinPQ<Key extends Comparable<Key>>

```
```

 IndexMinPQ(int n)
 void insert(int i, Key key)
 int delMin()
 void decreaseKey(int i, Key key)
    ```
    boolean isEmpty() is the priority queue empty?

\section*{DECREASE-KEY IN A BINARY HEAP}

Goal. Implement DeCREASE-Key operation in a binary heap.


\section*{Decrease-Key in a Binary Heap}

Goal. Implement DeCREASE-Key operation in a binary heap.

\section*{Solution.}
- Find vertex in heap. How?
- Change priority of vertex and call swim() to restore heap invariant.

Extra data structure. Maintain an array qp [] that maps from the vertex to the binary heap node index.


\section*{Dijkstra's algorithm: which priority queue?}

Depends on PQ implementation: \(V\) Insert, \(V\) Delete-Min, \(\leq E\) Decrease-Key.
\begin{tabular}{|c|c|c|c|c|}
\hline PQ implementation & INSERT & DELETE-MIN & DECREASE-KEY & total \\
\hline unordered array & 1 & \(V\) & 1 & \(V^{2}\) \\
\hline binary heap & \(\log V\) & \(\log V\) & \(\log V\) & \(E \log V\) \\
\hline d-way heap & \(\log _{d} V\) & \(d \log _{d} V\) & \(\log _{d} V\) & \(E \log _{E / V} V\) \\
\hline Fibonacci heap & \(1^{\dagger}\) & \(\log V^{\dagger}\) & \(1^{\dagger}\) & \(E+V \log V\) \\
\hline\(\dagger\) amortized \\
\hline
\end{tabular}

Bottom line.
- Array implementation optimal for complete graphs.
- Binary heap much faster for sparse graphs.
- 4-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

\section*{Priority-first search}

Dijkstra's algorithm seems familiar?
- Prim's algorithm is essentially the same algorithm.
- Both in same family of algorithms.

Main distinction: rule used to choose next vertex for the tree.
- Prim: Closest vertex to the tree (via an undirected edge).
- Dijkstra: Closest vertex to the source (via a directed path).


Note: DFS and BFS are also in same family.

\section*{Algorithm for shortest paths}

Variations on a theme: vertex relaxations.
- Bellman-Ford: relax all vertices; repeat \(V-1\) times.
- Dijkstra: relax vertices in order of distance from \(s\).
- Topological sort: relax vertices in topological order.
\begin{tabular}{|c|c|c|c|}
\hline algorithm & \begin{tabular}{c} 
worst-case \\
running time
\end{tabular} & \begin{tabular}{c} 
negative \\
weights +
\end{tabular} & \begin{tabular}{c} 
directed \\
cycles
\end{tabular} \\
\hline Bellman-Ford & \(E V\) & \(\boldsymbol{\iota}\) & \(\boldsymbol{\iota}\) \\
\hline Dijkstra & \(E \log V\) & & \(\boldsymbol{\nu}\) \\
\hline topological sort & \(E\) & & \\
\hline
\end{tabular}

\section*{Algorithm for shortest paths}

Select algorithm based on properties of edge-weighted graph.
- Negative weights (but no "negative cycles"): Bellman-Ford.
- Non-negative weights: Dijkstra.
- DAG: topological sort.

In practice. Algorithm with better worst-case running time is (usually) fastest.


\subsection*{4.4 Shortest Paths}

\section*{Algorithms}

Robert Sedgewick \| Kevin Wayne

\section*{- properties}

\section*{APls}
- Bellman-Ford algorithm
- Dijkstra's algorithm
- seam carving
https://algs4.cs.princeton.edu

\section*{Content-aware resizing}

Seam carving. [Avidan-Shamir] Resize an image without distortion for display on cell phones and web browsers.


Shai Avidan
Mitsubishi Electric Research Lab
Ariel Shamir
The interdisciplinary Center \& MERL

\section*{Content-aware resizing}

Seam carving. [Avidan-Shamir] Resize an image without distortion for display on cell phones and web browsers.


In the wild. Photoshop, Imagemagick, GIMP, ...

\section*{Content-aware resizing}

To find vertical seam:
- Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = "energy function" of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.


\section*{Content-aware resizing}

To find vertical seam:
- Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = "energy function" of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.


Content-aware resizing

To remove vertical seam:
- Delete pixels on seam (one in each row).


Content-aware resizing

To remove vertical seam:
- Delete pixels on seam (one in each row).


\section*{Shortest Path Variants in a Digraph}

Q1. How to model vertex weights (along with edge weights)?


Q2. How to model multiple sources and sinks?
```


[^0]: Robert Sedgewick \| Kevin Wayne

