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Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to .

edge-weighted digraph

.35
.35
.37
.28
.28
.32
.38
.26
.39
.29
.34
.40
.52
.58
.93

4->5
5->4
4->7
5->7
/->5
5->1
0->4
0->2
/->3
1->3
2->7
6->2
3->6
6->0
6->4

o
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shortest path from 0 to 6
0—-2—=7—=3—6

length of path = 1.51
026+0.34+0.39+0.52)
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Shortest path applications

« PERT/CPM.
« Map routing.

C- Seam carving. ) <«—— see Assignment 7

« Texture mapping.
« Robot navigation.
« Typesetting in 1TEX. E
. Currency exchange. st enuiipeciaors il Seam carving

« Urban traffic planning.

« Optimal pipelining of VLSI chip.

- Telemarketer operator scheduling.

« Routing of telecommunications messages.

« Network routing protocols (OSPF, BGP, RIP).

« Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.



Shortest path variants

Which vertices?

[- Single source: from one vertex s to every other vertex. )

« Single sink: from every vertex to one vertex .
« Source-sink: from one vertex s to another .
« All pairs: between all pairs of vertices.

Restrictions on edge weights?

we assume this in today’s lecture
(except as noted)

[- Non-negative weights.) —

« Euclidean weights.
« Arbitrary weights.

Cycles?
« No directed cycles.

« No “negative cycles.”

Simplifying assumption. Each vertex is reachable from s.



Shortest paths: quiz 1

Which variant in car GPS?

A. Single source: from one vertex s to every other vertex.

B. Single destination: from every vertex to one vertex t.
C. Source-destination: from one vertex s to another .
D

All pairs: between all pairs of vertices.
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Data structures for single-source shortest paths

Goal. Find a shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent a SPT with two vertex-indexed arrays:

« distTo[v] is length of a shortest path from s to v.
« edgeTo[v] is last edge on a shortest path from s to v.

distTo[] edgeTo[]
@ 0 0 null
a e 1 1.05 5->1
2 0.26 0->2
a a 3 0.97 7-53
@ 4 0.38 0->4
5 0.73 4->5
a @ 6 1.49 3->6
/ 0.60 2->7

shortest-paths tree from 0 parent-link representation



Edge relaxation

Relax edge e = v—w.
« distTo[v] is length of shortest known path from s to v.
« distTo[w] is length of shortest known path from s to w.

« edgeTo[w] is last edge on shortest known path from s to w.

o If e=v—w yields shorter path to w, update distTo[w] and edgeTo[w].

relax edge e = v—ow

black edges
are in edgeTo[]



Shortest paths: quiz 2

What are the values of distTo[v] and distTo[w] after relaxing e =v—w ?

o N ® »

10.0 and 15.0
10.0 and 17.0
12.0 and 15.0

12.0 and 17.0

distTo[v] =10.0

@<§I;O/

X

5.0
@ distTo[w] =17.0

10



Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] = .

For each vertex v: edgeTo[v] = null.
distTo[s] = O.
Repeat until done:

- Relax any edge.

no repeated vertices

Key properties. /

distTo[v] is the length of a simple path from s to v.
distTo[v] does not increase.

11



Framework for shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

For each vertex v: distTo[v] = .

For each vertex v: edgeTo[v] = null.
distTo[s] = O.
Repeat until done:

- Relax any edge.

Efficient implementations.
« Which edge to relax next?
« How many edge relaxations needed?

Ex 1. Bellman-Ford algorithm.
Ex 2. Dijkstra’s algorithm.

12
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Weighted directed edge API

public class DirectedEdge

DirectedEdge(int v, int w, double weight)
int from()
int to()

double weight()

Relaxing an edge e = v—w.

private void relax(DirectedEdge e)

{

int v = e.from(), w = e.to();
1f (distTo[w] > distTo[v] + e.weight())

{
distTo[w] distTo[v] + e.weight();
edgeTo[w] e;

. (—

weighted edge v—w

vertex v

vertex w

weight of this edge

14



Weighted directed edge: implementation in Java

API. Similar to Edge for undirected graphs, but a bit simpler.

public class DirectedEdge
{

private final int v, w;
private final double weight;

public DirectedEdge(int v, int w, double weight)
{

this.v = v;

this.w = w;

this.weight = weight;
}

public int from()
{ return v; }

public 1int to()
{ return w; }

public double weight()
{ return weight; }

from() and to() replace
either() and other()

15



Edge-weighted digraph API

APl. Same as EdgeWeightedGraph except with DirectedEdge objects.

public class

EdgeWeightedDigraph

void

Iterable<DirectedEdge>

int

EdgeWeightedDigraph(int V)  edge-weighted digraph with V vertices
addEdge(DirectedEdge e) add weighted directed edge e
adj(int v) edges incident from v

VO number of vertices

16



Edge-weighted digraph: adjacency-lists representation

tinyEWD. txt

\/\ﬁ;S
<« F

15
4 5 0.35
54 0.35
4 7 0.37
57 0.28
/75 0.28
51 0.32
04 0.38
02 0.26
7 3 0.39
13 0.29
27 0.34
6 2 0.40
36 0.52
6 0 0.58
6 4 0.93

N O i W N RO

AN

adj

.26

.38

.29

.34

Bag objects

.52 reference to a
Y DirectedEdge
object
.37 51.35 l
.32 71.28— 41,35
.93 0(.58— 21.40
.39 — 5.28

17



Edge-weighted digraph: adjacency-lists implementation in Java

Implementation. Almost identical to EdgeWeightedGraph.

public class EdgeWeightedDigraph

{

private final int V;
private final Bag<DirectedEdge>[] adj;

public EdgeWeightedDigraph(int V)
{
this.V = V;
adj = (Bag<Edge>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<DirectedEdge>();
}

public void addEdge(DirectedEdge e)
{

int v = e.from(), w = e.to();
adj[v].add(e);
}

public Iterable<DirectedEdge> adj(int v)
{ return adj[v]; }

add edge e = v—w to
only v's adjacency list

18



Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class SP

double
Iterable <DirectedEdge>

boolean

SP(EdgeWeightedDigraph G, int s)
distTo(int v)
pathTo(int v)

hasPathTo(int v)

shortest paths from s in digraph G

length of shortest path from s to v

shortest path from s to v

is there a path from s to v?

19
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Bellman-Ford algorithm

Bellman-Ford algorithm

For each vertex v: distTo[v] = .

For each vertex v: edgeTo[v] = null.
distTo[s] = O.

Repeat V-1 times:
- Relax each edge.

for (int 1 1; 1 < G.VQ; 1++)
for (int v =0; v < G.VQ; Vv++)
for (DirectedEdge e : G.adj(v)) |<——— passi(relax each edge)
relax(e);

Running time. Order of growth is Ex V in both best- and worst-case.

21



Bellman-Ford algorithm demo

Repeat V-1 times: relax all E edges. @

] 15 >

J

©O O O O O O O O O O O O O O o o

an edge-weighted digraph

22



Bellman-Ford algorithm demo

Repeat V-1 times: relax all E edges.

o

()

shortest-paths tree from vertex s

v distTo[] edgeTol[]
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

23



Bellman-Ford algorithm: visualization

passes

13

SPT

24



Bellman-Ford algorithm: correctness proof

Proposition. Lets=v—vi—=v;— ...— v =v be a shortest path from s to v.

Then, after pass i, distTo[vi] =d (v).

el €2 €k
\ length of shortest @ @
S

path from s to v; ’

Pf. [ by induction on i]
* Inductive hypothesis: after pass i, distTo[vi] =d (v)).
« Since distTo[vi+1] is the length of some path from s to vi.1,
we must have distTo[viz1] = d (vit1).
- Immediately after relaxing edge v; — vi+1 in pass i+1, we have
distTo[vi+1] < distTo[vi] + weight(vi, vi+1)

=d (vi) + weight(vi, vi+1)

— d*(vi+1). and cannot change ever again

v

* Thus, at the end of pass i+1, distTo[vi+1] =d (Viz1). =

Corollary. Bellman-Ford computes shortest path distances.
Pf. There exists a shortest path from s to v with at most V-1 edges.

= < V-1 passes suffice. \ |
edge weights

are non-negative 25



Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax

any edge incident from v in pass i + 1.

Queue-based implementation of Bellman-Ford. Maintain queue of vertices

whose distTo[] values needs updating. \
each vertex on queue

at most once
9 (or exponential blowup!)

S S N S—

relax in pass i+1 relax in pass i

Impact.
« |In the worst case, the running time is still proportional to E x V.

« But much faster in practice on typical inputs.

26



LONGEST PATH

Problem. Given a digraph G with positive edge weights and vertex s,
find a longest simple path from s to every other vertex.

Goal. Design algorithm with E x V running time.

AN
(N}

longest simple path from 0 to 4: 014234

27



Bellman-Ford algorithm: negative weights

Remark. The Bellman—Ford algorithm works even if some weights are
negative, provided there are no negative cycles.

Negative cycle. A directed cycle whose length is negative.

@—4—»%)—1—»? 5 —>(5)

-8 2

hems —

length of negativecycle=1+2 +3 + -8 = -2

Negative cycles and shortest paths. Length of path can be made arbitrarily
negative by using negative cycle.

0=>1-2—->3>4—> - »]1->2->3>4->1->2->5

28
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Edsger W. Dijkstra: select quotes

: -oriented
;s an exceptionally basm?;“g
which could only pa, -~ 8
/ originated in Califol‘nia A
-~ Edsger Dijkstry

30



Edsger W. Dijkstra: select quotes

“ Do only what only you can do. ”

“The use of COBOL cripples the mind; its teaching should,

therefore, be regarded as a criminal offence.”

“ It is practically impossible to teach good programming to
students that have had a prior exposure to BASIC: as potential
programmers they are mentally mutilated beyond hope of

regeneration.”
“ APL is a mistake, carried through to perfection. It is the
language of the future for the programming techniques

of the past: it creates a new generation of coding bums.”

Q'O ENpCS e 0GB =T)vMna2 =T <D+ (VD" CM), (VO M), (V,OVID'(V,V 1 DS M’

Edsger W. Dijkstra
Turing award 1972

31



Dijkstra’s algorithm demo

« Consider vertices in increasing order of distance from s
(non-tree vertex with the lowest distTo[] value).
« Add vertex to tree and relax all edges incident from that vertex.

<

an edge-weighted digraph

0—1
0—4
0—7
12

©O O O O O O O O O O O O O O o o

>

32



Dijkstra’s algorithm demo

« Consider vertices in increasing order of distance from s
(non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges incident from that vertex.

o

()

shortest-paths tree from vertex s

(3)

v distTo[] edgeTol[]
0 0.0 -

1 5.0 0—1

2 14.0 5—2

3 17.0 2—3

4 9.0 0—4

5 13.0 4—5

6 25.0 2—6

7 8.0 0—7

33



Dijkstra’s algorithm visualization

34



Dijkstra’s algorithm visualization

35



Dijkstra’s algorithm: correctness proof

Invariant. For each vertex v in 7, distTo[v] = d (v).

AN

length of shortest s ~ v path

Pf. [ by induction on |T|]
« Let w be next vertex added to T.
Let P be the s ~w path of length distTo[w].

Consider any other s ~w path P'.

Let x—y be first edge in P’ that leaves T.

P’ is no shorter than P:

length(P) distTo[w]

() O,

IA

distTol[y]

IA

distTo[x] + weight(x,y)

d’(x) + weight(x,y)

IA

length(P’)

36



Dijkstra’s algorithm: correctness proof

Invariant. For each vertex v in 7, distTo[v] = d (v).

AN

length of shortest s ~ v path

Corollary. Dijkstra’s algorithm computes shortest path distances.
Pf. Upon termination, T contains all vertices (reachable from s).

37



Dijkstra’s algorithm: Java implementation

public class DijkstraSP

{
private DirectedEdge[] edgeTo;

private double[] distTo; PQ that supports

private IndexMinPQ<Double> pq; < decreasing the key
(stay tuned)

public DijkstraSP(EdgeWeightedDigraph G, int s)

{
edgeTo = new DirectedEdge[G.V()];
distTo = new double[G.V()];
pg = new IndexMinPQ<Double>(G.V());
for (int v = 0; v < G.VQ; v++)
distTo[v] = Double.POSITIVE INFINITY;
distTo[s] = 0.0;
pg.insert(s, 0.0);
while (!pqg.isEmpty())
{ i relax vertices in order
int v = pq.delMin(); < .
: . of distance from s
for (DirectedEdge e : G.adj(v))
relax(e);
}
}



Dijkstra’s algorithm: Java implementation

When relaxing an edge, also update PQ:
« Found first path from s to w: add w to PQ.
* Found better path from s to w: decrease key of w in PQ.

private void relax(DirectedEdge e)

{

int v = e.from(QD, w = e.to();
1f (distTo[w] > distTo[v] + e.weight())

{
distTo[w] = distTo[v] + e.weight();
edgeTol[w] = e;
1f (!pg.contains(w)) pg.insert(w, distTo[w]);
«— date P
else pg.decreaseKey(w, distTo[w]); IR S
}



Indexed priority queue (Section 2.4)

Associate an index between 0 and n -1 with each key in a priority queue.

« Insert a key associated with a given index. \

« Delete a minimum key and return associated index. for D_U';S”a’s a'gtorithm:
Indaex = veritex

- Decrease the key associated with a given index. key = distance from s

public class IndexMinPQ<Key extends Comparable<Key>>

IndexMinPQ(int n) create PQ with indices 0,1, ..., n—1
void insert(int i, Key key) associate key with index i
int delMin() remove min key and return associated index
void decreaseKey(int i, Key key) decrease the key associated with index i

boolean 1isEmpty() is the priority queue empty?

40



DECREASE-KEY IN A BINARY HEAP

Goal. Implement DECREASE-KEY operation in a binary heap.

41



DECREASE-KEY IN A BINARY HEAP

Goal. Implement DECREASE-KEY operation in a binary heap.

Solution.
« Find vertex in heap. How?
« Change priority of vertex and call swim() to restore heap invariant.

Extra data structure. Maintain an array qp[] that maps from the vertex
to the binary heap node index.

0 1 2 3 4 5 o6 7 8

pall] - v, Vo V4 Vg Vy
qpl[] 5 8 @ 1 2 4 3 —

keys[] 10200060 8.0 4.0 2.0 -

vertex 2 has priority 3.0

and is at heap index 4
42



Dijkstra’s algorithm: which priority queue?

Depends on PQ implementation: V INSERT, V DELETE-MIN, < E DECREASE-KEY.

PQ implementation INSERT DELETE-MIN DECREASE-KEY “

unordered array

binary heap logV log V logV ElogV
d-way heap log, V dlog,V log, V Elogg,yV
Fibonacci heap 17 log V¥ 17 E+VlogV

+ amortized

Bottom line.
« Array implementation optimal for complete graphs.
« Binary heap much faster for sparse graphs.

« 4-way heap worth the trouble in performance-critical situations.
« Fibonacci heap best in theory, but not worth implementing.

43



Priority-first search

Dijkstra’s algorithm seems familiar?
« Prim’s algorithm is essentially the same algorithm.
« Both in same family of algorithms.

Main distinction: rule used to choose next vertex for the tree.

« Prim: Closest vertex to the tree (via an undirected edge).
« Dijkstra: Closest vertex to the source (via a directed path).

Note: DFS and BFS are also in same family.

44



Algorithm for shortest paths

Variations on a theme: vertex relaxations.
« Bellman-Ford: relax all vertices; repeat V-1 times.
« Dijkstra: relax vertices in order of distance from s.
- Topological sort: relax vertices in topological order.

worst-case negative directed
running time weights t cycles
Bellman-Ford EV v v
Dijkstra ElogV v

t no negative cycles

45



Algorithm for shortest paths

Select algorithm based on properties of edge-weighted graph.
« Negative weights (but no “negative cycles”): Bellman-Ford.
« Non-negative weights: Dijkstra.
« DAG: topological sort.

In practice. Algorithm with better worst-case running time is (usually) fastest.

worst-case negative directed
running time weights t cycles
EV v v

Bellman-Ford

Dijkstra ElogV v

t no negative cycles

46



4.4 SHORTEST PATHS

Algorithms

» seam carving

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu


http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Content-aware resizing

Seam carving. [Avidan-Shamir] Resize an image without distortion for

display on cell phones and web browsers.

1o

‘Image Resizing

Shai Avidan
Mitsubishi Electric Research L.ab

Ariel Shamir
The interdisciplinary Center & MERL

https://www.youtube.com/watch?v=vIFCV2spKtg

48


http://www.youtube.com/watch?v=vIFCV2spKtg

Content-aware resizing

Seam carving. [Avidan-Shamir] Resize an image without distortion for
display on cell phones and web browsers.

In the wild. Photoshop, Imagemagick, GIMP, ...

49



Content-aware resizing

To find vertical seam:
« Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.
« Weight of pixel = “energy function” of 8 neighboring pixels.
« Seam = shortest path (sum of vertex weights) from top to bottom.

50



Content-aware resizing

To find vertical seam:
« Grid graph: vertex = pixel; edge = from pixel to 3 downward neighbors.
« Weight of pixel = “energy function” of 8 neighboring pixels.
« Seam = shortest path (sum of vertex weights) from top to bottom.

seam

KK

EERBREES

d

i

G552 G5

51



Content-aware resizing

To remove vertical seam:
« Delete pixels on seam (one in each row).

52



Content-aware resizing

To remove vertical seam:
« Delete pixels on seam (one in each row).

53



SHORTEST PATH VARIANTS IN A DIGRAPH

Q1. How to model vertex weights (along with edge weights)?

X 7
a C
SO
,
€
N

S~

'

Q2. How to model multiple sources and sinks?

54



