Algorithms

 \checkmark

ROBERT SEDGEWICK | KEVIN WAYNE

4.3 MINIMUM SPANNING TREES

Last updated on 11/12

introduction

cut property

edge-weighted graph API
Kruskal's algorithm

Prim's algorithm

Robert Sedgewick | Kevin Wayne

Algorithms

https://algs4.cs.princeton.edu

4.3 MINIMUM SPANNING TREES

introduction

cut property

edge-weighted graph API

Kruskal's algorithm

Prim's algorithm

Algorithms

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

not acyclic

- A tree: connected and acyclic.
- Spanning: includes all of the vertices.

Minimum spanning tree problem

Input. Connected, undirected graph *G* with positive edge weights.

Input. Connected, undirected graph *G* with positive edge weights. Output. A spanning tree of minimum weight.

Brute force. Try all spanning trees?

Let T be any spanning tree of a connected graph G with V vertices. Which of the following properties must hold?

- **A.** *T* contains exactly V 1 edges.
- **B.** Removing any edge from T disconnects it.
- **C.** Adding any edge to *T* creates a cycle.
- **D.** All of the above.

https://www.utdallas.edu/~besp/teaching/mst-applications.pdf

Dendrogram of cancers in human

Applications

MST is fundamental problem with diverse applications.

- Cluster analysis.
- Real-time face verification.
- LDPC codes for error correction.
- Image registration with Renyi entropy.
- Curvilinear feature extraction in computer vision.
- Find road networks in satellite and aerial imagery.
- Handwriting recognition of mathematical expressions.
- Measuring homogeneity of two-dimensional materials.
 Model locality of particle interactions in turbulent fluid flows.
- Reducing data storage in sequencing amino acids in a protein.
- Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
- Network design (communication, electrical, hydraulic, computer, road).
- Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

4.3 MINIMUM SPANNING TREES

introduction

cut property

edge-weighted graph API

Kruskal's algorithm

Prim's algorithm

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

For simplicity, we assume:

- The graph is connected. \Rightarrow MST exists.
- The edge weights are distinct. \Rightarrow MST is unique. \leftarrow see Exercise 4.3.3

Note. Algorithms still work even if duplicate edge weights.

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. Def. A crossing edge is an edge that has one endpoint in each set.

Cut property. For any cut, the min-weight crossing edge is in the MST.

4

Which is the min-weight edge crossing the cut $\{2, 3, 5, 6\}$?

- 0–7 (0.16) Α. 0-7 0.16 **B.** 2–3 (0.17) 2-3 0.17 1-7 0.19 **C.** 0–2 (0.26) 0-2 0.26 5-7 0.28 **D.** 5–7 (0.28) 1-3 0.29 1-5 0.32 2-7 0.34 4-5 0.35 3 1-2 0.36 5 4-7 0.37 7 0-4 0.38 2 6-2 0.40 0 3-6 0.52
 - 6-0 0.58

6

6-4 0.93

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. Def. A crossing edge is an edge that has one endpoint in each set.

Cut property. For any cut, the min-weight crossing edge *e* is in the MST.

Note. A cut may have multiple edges in the MST.

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets. Def. A crossing edge is an edge that has one endpoint in each set.

Cut property. For any cut, the min-weight crossing edge *e* is in the MST. Pf. [by contradiction] Suppose *e* is not in the MST *T*.

- Adding *e* to the MST creates a cycle.
- Some other edge *f* in cycle must be a crossing edge.
- Removing *f* and adding *e* yields a different spanning tree *T*'.
- Since weight of *e* is less than the weight of *f*, the weight of *T'* is less than the weight of *T*.
- Contradiction.

creates a unique cycle

Framework for minimum spanning tree algorithm

Efficient implementations.

- Which cut? \leftarrow 2^{V-2} distinct cuts
- How to compute min-weight crossing edge.
- Ex 1. Kruskal's algorithm.
- Ex 2. Prim's algorithm.
- Ex 3. Borüvka's algorithm.

4.3 MINIMUM SPANNING TREES

Algorithms

edge-weighted graph API

Kruskal's algorithm

Prim's algorithm

introduction

cut property

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Edge abstraction for weighted edges.

public class Edge implements Comparable<Edge>

	Edge(int v, int w, double weight)	create a weighted edge v–w
int	either()	either endpoint
int	other(int v)	the endpoint that's not v
int	compareTo(Edge that)	compare edges by weight
	0 0 0	0 0 0

Idiom for processing an edge e. int v = e.either(), w = e.other(v).

Weighted edge: Java implementation

Edge-weighted graph API

API. Same as Graph and Digraph, except with explicit Edge objects.

public class EdgeWeightedGraph				
	EdgeWeightedGraph(int V)	create an empty graph with V vertices		
void	addEdge(Edge e)	add weighted edge e to this graph		
Iterable <edge></edge>	adj(int v)	edges incident to v		
	:	* * *		

Edge-weighted graph: adjacency-lists representation

Representation. Maintain vertex-indexed array of Edge lists.

Edge-weighted graph: adjacency-lists implementation

Minimum spanning tree API

- **Q**. How to represent the MST?
- A. Technically, an MST is an edge-weighted graph.For convenience, we represent it as a set of edges.

public class MST				
	MST(EdgeWeightedGraph G)	constructor		
Iterable <edge></edge>	edges()	edges in MST		
double	weight()	weight of MST		

4.3 MINIMUM SPANNING TREES

Algorithms

Kruskal's algorithm

Prim's algorithm

edge-weighted graph API

introduction

cut property

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Kruskal's algorithm demo

Consider edges in ascending order of weight.

• Add next edge to T unless doing so would create a cycle.

6-4 0.93

graph edges

In which order does Kruskal's algorithm select edges in MST?

- **A.** 1, 2, 4, 5, 6
- **B.** 1, 2, 4, 5, 8
- **C.** 1, 2, 5, 4, 8
- **D.** 8, 2, 1, 5, 4

Kruskal's algorithm: visualization

Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. Let *T* be tree at some point during execution, and let *e* be next edge.

[Case 1] Kruskal's algorithm adds edge e = v - w to T.

- Vertices v and w are in different connected components of T.
- Cut = set of vertices connected to v in T.
- By construction of cut, no edge crossing cut is currently in T.
- No edge crossing cut has lower weight. Why?
- Cut property \Rightarrow edge *e* is in the MST.

recall: consider edges in ascending order by weight Proposition. [Kruskal 1956] Kruskal's algorithm computes the MST.

Pf. Let *T* be tree at some point during execution, and let *e* be next edge.

[Case 2] Kruskal's algorithm discards edge e = v-w.

- From Case 1, all edges in T are in the MST.
- The MST can't contain a cycle. •

Kruskal's algorithm: implementation challenge

Challenge. Would adding edge *v*–*w* to tree *T* create a cycle? If not, add it.

Efficient solution. Use the union-find data structure.

- Maintain a set for each connected component in T.
- If *v* and *w* are in same set, then adding *v*–*w* would create a cycle.
- To add *v*-*w* to *T*, merge sets containing *v* and *w*.

Case 2: adding v-w creates a cycle

Case 1: add v-w to T and merge sets containing v and w

Kruskal's algorithm: Java implementation

Proposition. In the worst case, Kruskal's algorithm computes MST in time proportional to $E \log E$.

Pf.

• Bottlenecks are sort and union-find operations.

operation	frequency	time per op
Sort	1	$E \log E$
UNION	<i>V</i> – 1	$\log V^{\dagger}$
Find	2 E	$\log V^{\dagger}$

† using weighted quick union

• Total. $V \log V + E \log V + E \log E$.

dominated by $E \log E$ since graph is connected

Given a graph with positive edge weights, how to find a spanning tree that minimizes the sum of the squares of the edge weights?

- A. Run Kruskal's algorithm using the original edge weights.
- **B.** Run Kruskal's algorithm using the squares of the edge weights.
- **C.** Run Kruskal's algorithm using the square roots of the edge weights.
- **D.** All of the above.

sum of squares = $4^2 + 6^2 + 5^2 + 10^2 + 11^2 + 7^2 = 347$

Problem. Given an undirected graph *G* with positive edge weights, find a spanning tree that maximizes the sum of the edge weights.

Goal. Design algorithm with $E \log E$ running time.

maximum spanning tree T (weight = 104)

Gordon Gecko (Michael Douglas) evangelizing the importance of greed (in algorithm design?) Wall Street (1986)

4.3 MINIMUM SPANNING TREES

Algorithms

Prim's algorithm

Kruskal's algorithm

edge-weighted graph API

introduction

cut property

Robert Sedgewick | Kevin Wayne

https://algs4.cs.princeton.edu

Prim's algorithm demo

- Start with vertex 0 and grow tree T.
- Repeat until V 1 edges:

- add to *T* the min-weight edge with exactly one endpoint in *T*

In which order does Prim's algorithm select edges in the MST? Assume it starts from vertex s.

- **A.** 1, 2, 3, 4, 5
- **B.** 1, 2, 5, 4, 8
- **C.** 8, 2, 1, 5, 4
- **D.** 8, 5, 4, 2, 1

Prim's algorithm: visualization

Prim's algorithm: proof of correctness

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959] Prim's algorithm computes the MST.

- Pf. Let e = min-weight edge with exactly one endpoint in *T*.
 - Cut = set of vertices in *T*.
 - No crossing edge is in *T*.
 - No crossing edge has lower weight.
 - Cut property ⇒ edge *e* is in the MST.

Challenge. Find the min-weight edge with exactly one endpoint in *T*.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in *T*.

- Key = edge; priority = weight of edge.
- DELETE-MIN to determine next edge e = v w to add to T.
- If both endpoints v and w are marked (both in T), disregard.
- Otherwise, let *w* be the unmarked vertex (not in *T*):
 - add *e* to *T* and mark *w*
 - add to PQ any edge incident to w (assuming other endpoint not in T)

Prim's algorithm: lazy implementation demo

- Start with vertex 0 and grow tree T.
- Repeat until *V* 1 edges:

Lazy Prim's algorithm: running time

Proposition. In the worst case, lazy Prim's algorithm computes the MST in time proportional to $E \log E$ and extra space proportional to E.

Pf.

can be improved to V with "eager" version

- Bottlenecks are PQ operations.
- Each edge is added to PQ at most once.
- Each edge is deleted from PQ at most once.

operation	frequency	binary heap
INSERT	E	$\log E$
Delete-Min	E	log E

Challenge. Find min-weight edge with exactly one endpoint in *T*.

Observation. For each vertex *v*, need only min-weight edge connecting *v* to *T*.

- MST includes at most one edge connecting v to T. Why?
- If MST includes such an edge, it must take lightest such edge. Why?

Impact. PQ of vertices; extra space at most *V*; running time *E* log *V*.

MST: algorithms of the day

algorithm	visualization	bottleneck	running time
Kruskal		sorting union–find	E log E
Prim		priority queue	E log V