A 1 g() I 1 [h Ims ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED GRAPHS

» introduction

» digraph API

» depth-first search

» breadth-first search

» topological sort

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

4.2 DIRECTED GRAPHS

» introduction

Algorithms

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Road networks

Vertex = intersection; edge = one-way street.

w TYVES Of U I “~
2 &,
t $ > % S & % /
7 %. S S)
= S) @ (]
[c &) — @Q b’ S/
] S > J ¥ S &
—r - @)(‘, 43, ~ & &S
Vest © b4 % 3 G
ry St I OG Canal S Sq, 9,7 s
— d o Station [1] / /¢ (74 !S/ =
V. =) /]
t] estry St \ ”s,o S/t ~ ,
AN
aj f bt ?90 Canal St
-aight St — '5 Station [A,C E] Vs ~
<Z5 Laight St == § \ m 4 7
o
< l Laight s G’Go
= —
8 t o e Laight St — g,
berisi = ! P 7 5
— 9 = é
== ' £ & ~
& Hubert s 7 S 3 &
L. 4 L ® Ky
e @ ANS)
Q w —— 'D
E 5 (73] . 2 % 4 22
£ b o ~ York Sy & £ 0 & v
> = o 2 (s) 2! O ~
5 2 - (5 3 & &
(G O E=) © — 1 &) Q) L
Beach - & / : Ky q}c?
St .- X 7 &S
Encsson St . ~ y
l = S
> () fd O
! Moore s T w ec T sS'/ /4 S, /70
t $ 66\/ 0*9/ ¥4 n"”‘a
e >‘¢E \ \s} 4
7= N Moore g Y
| - N S
75} MOOre St ? ~ f a/'dS’ ¥
c @ Canal St Stati
S | / = ™ [NQRW]
T) =
o Frank)in St——= I: Franklin'St g\’b 4 S M/G/
;§ = __Frankiin St -tatmun[ﬂ Q')S;b “ Zg § "'@r Sy /
: % AN R o
2 TN AN s
amson St (&) r N g 7o o(b
Hams { c (N
on St — S, 8 - ; Wy e
erd,S‘ / ,.90*/ f /,86\
¢ / /
J @ J IOSI \ N N
o), /
E u,
w Y 3 ™ <
& ©2008 Google - Map data ©2008 Sanborf, NAVTEQ™ - Terms of Use

Political blogosphere links

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Russian troll network

Vertex = Russian troll; edge = Twitter mention.

1“”"7/7/7//4 e

W/
A RO |

e [\

: \ / 7

i N)

14 Vi >
Account Type

® NonEnglish RightTroll e |eftTroll ® Fearmonger ® HashtagGamer © Unknown NewsFeed e Commercial

Russian Troll-to-Russian Troll Twitter Mention Network, fivethirtyeight.com

http://fivethirtyeight.com

Science

clickstreams

Economics

o,
""Philosoph)’ ®
Social work ® @ Qe
o Child Education 2 &
(] . o '
:. Psychology ® . .‘0‘ 20,
° L

® /Anthropology O)
Psychology.
°

i
b ® Archeolo
e Human Y
® Q¢ .'l.:!h‘{","\‘
..Cognmve
Science

Jourism

o .4 §
b AL)

Minerology

* Acoustics

Material science
Engineering

Production
research

.
“ International

studies

o @)
Statisticalg i 9e

physics fe.<9,
® ol ov5°
Physical\ «*i®8e®

chemistry, % g S7ee80-"

®
L
."s". @ /\sian

studies

(YA
Organic™® 2
chemistry
e e
r < Analytical ¢
L N5 ° a I
0’ . ° Chem\sny,.. .o: pe
0.9°ve Religiqn %'t
[) «“wely
Social\and personality
psychology
@ Y
e®
L

o
Biochemistry

®
7 o/ Animal
PR gehaviore
1)

Applied
physics

Polymers
L]

® v

L
*.{.e_-®*Pharmaceutical

{ A0 research
o
L
®e
Chemical

S.

° - 2

o Engineering
L]

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803

Overnight interbank loans

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Digraph applications

transportation street intersection one-way street
web web page hyperlink
food web species predator—prey relationship
WordNet synset hypernym
scheduling task precedence constraint
financial bank transaction
cell phone person placed call
infectious disease person infection
game board position legal move
citation journal article citation
object graph object pointer
inheritance hierarchy class inherits from

control flow code block jump

Directed graph terminology

Digraph. Set of vertices connected pairwise by directed edges.

directed edge 7—6
7 is adjacent to 6
vertex 6 6 is adjacent from 7

outdegree = 4
l indegree = 2 /

directed path
from O to 2 \

(of length 3)

0o—

<«—— directed cycle
(of length 3)

(1D

Some digraph problems

Is there a path from s tot ?

s~t path

shortest s—~t path

directed cycle

topological sort

strong connectivity

transitive closure

PageRank

What is the shortest path from s to t ?

Is there a directed cycle in the graph ?

Can the digraph be drawn so that all edges point upwards?

Is there a directed path between every pairs of vertices ?

For which vertices v and w is there a directed path from v tow ?

What is the importance of a web page ?

10

4.2 DIRECTED GRAPHS

» digraph AP

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Digraph API

Almost identical to Graph API.

public class Digraph

Digraph(int V) create an empty digraph with V vertices
void addEdge(int v, int w) add a directed edge v—w
Iterable<Integer> adj(int v) vertices adjacent from v
int V() number of vertices

Note. Full Digraph API includes additional methods, such as reverse().

12

Digraph representation: adjacency lists

Maintain vertex-indexed array of lists.

adj[

/1NN

=
N R

]

51
0 3

5 |2

3 2

4

94— -
6 9

6

11}—+{10

12

4 {12

13

Directed graphs: quiz 1 >

Which is the order of growth of the running time for removing an
edge v—w from a digraph using the adjacency-lists representation,
where V is the number of vertices and E is the number of edges?

1 ~[5 1

outdegree(v) adj[]

indegree(w)

o N ® »

outdegree(v) + indegree(w)

O© 00 N O ui A W N R O

7 (/IS

=
(@)

11 10

=
=

=
N

™12

14

Directed graphs: quiz 2 ’

Which is the order of growth of the running time of the following

code fragment if the digraph uses the adjacency-lists representation,
where V is the number of vertices and E is the number of edges?

A. 4 for (int v =0; v < G.VO; v++)
B E+V for (int w : G.adj(v))
) StdOut.println(v + "->" + w);
2
C. vV prints each edge exactly once
D. VE

15

Digraph representations

In practice. Use adjacency-lists representation.
« Algorithms based on iterating over vertices adjacent from v.
- Real-world graphs tend to be sparse (not dense).

T T

proportional proportional
to V edges to V2 edges

insert edge edge from iterate over vertices

representation !
P fromvtow v to w? adjacent from v?

list of edges E 1 E E
adjacency matrix V2 1+ 1 Vv
adjacency lists E+V 1 outdegree(v) Coutdegree(v))

1 disallows parallel edges

Adjacency-lists graph representation (review): Java implementation

public class Graph
{

private final int V;
private Bag<Integer>[] adj;

public Graph(int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V]; «—
for (int v =0; v <V; v++)
adj[v] = new Bag<Integer>();

public void addEdge(int v, int w)

{
adj[v].add(w);

«—
adj[w].add(v);
}
public Iterable<Integer> adj(int v)
{ return adj[v]; } ‘

adjacency lists

create empty graph
with V vertices

add edge v-w

iterator for vertices
adjacent to v

17

Adjacency-lists digraph representation: Java implementation

public class Digraph
{

private final int V;

private Bag<Integer>[] adj; am — celEcsneyiisie

public Digraph(int V)

{
this.V = V; create empty digraph
adj = (Bag<Integer>[]) new Bag[V]; «— with V vertices
for (int v = 0; v < V; Vv++)
adj[v] = new Bag<Integer>();
}

public void addEdge(int v, int w)

{
adj[v].add(w);

«———— add edge v—w

public Iterable<Integer> adj(int v)
{ return adj[v]; } «——— iterator for vertices

adjacent from v

4.2 DIRECTED GRAPHS

Al gor ithms > depfh-firsf search

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Reachability

Problem. Find all vertices reachable from s along a directed path.

S

A A A A
Y Y Y Y
r<—‘< ’ >’ -0 > = >I
Y
>0 <« @<« @< >’< @

20

Depth-first search in digraphs

Same method
« Every unc

e« DFSisac

as for undirected graphs.
irected graph is a digraph (with edges in both directions).
igraph algorithm.

DFS (to visit a vertex v)

Mark vertex v.
Recursively visit all unmarked

vertices w adjacent from v.

21

Depth-first search demo

To visit a vertex v :

0

« Mark vertex v as visited.
« Recursively visit all unmarked vertices adjacent from v.

pE

a directed graph

22

Depth-first search demo

To visit a vertex v:
« Mark vertex v as visited.
« Recursively visit all unmarked vertices adjacent from v.

\

c a reachable

from vertex O

o

reachable from O

v marked[] edgeTol[]
0 T —
1 T 0
2 T 3
3 | T 4
4 T 5
5 T 0
6 F —
/ F —
8 F -
9 F —
10 F —
11 F -
12 F —

23

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

public class DepthFirstSearch
{

private boolean[] marked; <«——— true if connected to s

public DepthFirstSearch(Graph G, int s)
{

marked = new boolean[G.V()]; constructor marks
dfs(G, s); vertices connected to s

}

private void dfs(Graph G, int v)
{ <«—— recursive DFS does the work
marked[v] = true;
for (int w : G.adj(v))
if (Imarked[w])
dfs(G, w);

public boolean visited(int v)

{ return marked[v]; } <« s vertex vis connected to s ?

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.

public class DirectedDFS
{

private boolean[] marked; <«——— trueif connected to s

public DirectedDFS(Digraph G, int s)
{

marked = new boolean[G.V()]; constructor marks
dfs(G, s); vertices connected to s

}

private void dfs(Digraph G, int v)
{ <«—— recursive DFS does the work
marked[v] = true;
for (int w : G.adj(v))
if (Imarked[w])
dfs(G, w);

public boolean visited(int v)

{ return marked[v]; } <«——— is vertex v reachable from s ?

Reachability application: program control-flow analysis

Every program is a digraph.

« Vertex = basic block of instructions (straight-line program).

« Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.

26

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
« Vertex = object.
« Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
(starting at a root and following a chain of pointers). -\'\

27

Reachability application: mark-sweep garbage collector

Mark—sweep algorithm. [McCarthy, 1960]
« Mark: mark all reachable objects.
« Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).

S

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
v« Reachability.
v« Path finding.
« Topological sort.
« Directed cycle detection.

Basis for solving difficult digraph problems.
« 2-satisfiability.
« Directed Euler path.
« Strongly connected components.

SIAM J. CompUT.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJANY

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k,V + k,E + k,for some constants k, , k,, and k,, where Vis the number of vertices and E is the number
of edges of the graph being examined.

29

4.2 DIRECTED GRAPHS

Algorithms

» breadth-first search

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Shortest directed paths

Problem. Find directed path from s to each vertex that uses fewest edges.

) 4
~t

31

Breadth-first search in digraphs

Same method as for undirected graphs.

« Every undirected graph is a digraph (with edges in both directions).

« BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v

- for each unmarked vertex adjacent from v:

add to queue and mark as visited.

Proposition. In worst case, BFS computes directed path with
fewest edges from s to each vertex in time proportional to E + V.

32

Directed breadth-first search demo

Repeat until queue is empty: @
« Remove vertex v from queue.
« Add to queue all unmarked vertices adjacent from v and mark them.

tinyDG2. txt
V

T 6 E
@ p(2 8/
5 0
2 4
3 2
1 2
01
v 4 3
0 2

graph G

Directed breadth-first search demo

Repeat until queue is empty:

« Remove vertex v from queue.

« Add to queue all unmarked vertices adjacent from v and mark them.

(O —

@/@

all done

D)

\"

edgeTo[] marked[]

uvT DN W N — O

w N B O O |

T

4 4 4 4 -

34

MULTIPLE-SOURCE SHORTEST PATHS

Given a digraph and a set of source vertices, find shortest path from
any vertex in the set to every other vertex.

Ex. S={1,7,10}.
+ Shortest path to 4 is 7-6—4. Q
nortest path to 5is 7—=6—0—5.

S
« Shortest path to 12 is 10—12. @ e
©

o
needed for Assignment 6

/

Q. How to implement multi-source shortest paths algorithm?

35

Directed graphs: quiz 3 L

Suppose that you want to design a web crawler. Which graph-search
algorithm should you use?

depth-first search
breadth-first search

either A or B

O N w »

neither A nor B

36

Web crawler output

BFS crawl

http://www.princeton.edu
http://www.w3.0rg

http://ogp.me
http://giving.princeton.edu
http://www.princetonartmuseum.org
http://www.goprincetontigers.com
http://1ibrary.princeton.edu
http://helpdesk.princeton.edu
http://tigernet.princeton.edu
http://alumni.princeton.edu
http://gradschool.princeton.edu
http://vimeo.com
http://princetonusg.com
http://artmuseum.princeton.edu
http://jobs.princeton.edu
http://odoc.princeton.edu
http://blogs.princeton.edu
http://www.facebook.com
http://twitter.com
http://www.youtube.com
http://deimos.apple.com
http://qgeprize.org
http://en.wikipedia.org

DFS crawl

http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:
http:

//www.princeton.edu
//deimos.apple.com
//www.youtube.com
//www.google.com
//news.google.com
//csi.gstatic.com
//googlenewsblog.blogspot.com
//1abs.google.com
//groups.google.com
//imgl.blogblog.com
//Teeds.feedburner.com
/buttons.googlesyndication.com
//fusion.google.com
//insidesearch.blogspot.com
//agoogleaday.com
//static.googleusercontent.com
//searchresearchl.blogspot.com
//feedburner.google.com
//www.dot.ca.gov
//www.TahoeRoads.com
//www.LakeTahoeTransit.com
//www. laketahoe.com
//ethel.tahoeguide.com

37

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. [BFS with implicit digraph]
« Choose root web page as source s.

« Maintain a Queue of websites to explore.

« Maintain a SET of marked websites.

« Dequeue the next website and enqueue
any unmarked websites to which it links.

Remark. Industrial-strength web crawlers
use more sophisticated algorithms.

38

Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<String>(Q); <+ queue of websites to crawl
SET<String> marked = new SET<String>(Q); <« set of marked websites

String root = "http://www.princeton.edu";
queue.enqueue(root) ; <« start crawling from root website

marked.add(root) ;

while (!queue.isEmpty())
{

String v = queue.dequeue();

StdOut.printin(v); <
In in = new In(v);

String input = in.readAl1(Q);

read in raw html from next

website in queue

String regexp = "http://QO\w+\\.)+O\\w+)"; use regular expression to find all URLs
Pattern pattern = Pattern.compile(regexp); < in website of form http://xxx.yyy.zzz
Matcher matcher = pattern.matcher(input); [crude pattern misses relative URLs]

while (matcher.find())

{
String w = matcher.group();
if (!marked.contains(w))
{
marked.add(w) ; < if unmarked, mark and enqueue
g.enqueue(w);
}
¥

4.2 DIRECTED GRAPHS

Algorithms

» topological sort

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Combinational circuit

Vertex = logical gate; edge = wire.

7

—
\
o

L

41

WordNet digraph

Vertex = synset; edge =

happening
occurrence
occurrent
natural_event

7N\
change

alteration miracle
modification

pA \
damage

harm transition increase
impairment A I
leap .
hump jump
. leap
saltation

https://wordnet.princeton.edu

T~

hypernym relationship.

/

A
Y

act
human_action
human_activity

4\
forfeit
forfeiture actio group_action
sacrifice / A \
resistance chang transgression
opposition 9
A
motm\
demotion movement variation
move
Iocomotionv\CI nt
travel esfe
run jump
running parachuting

f

dash

sprint

42

Git digraph

Vertex = revision of repository; edge = revision relationship.

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,
in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

®

. Algorithms é

0

1. Complexity Theory () \ @
2. Machine Learning @(_@

3. Intro to CS / p

4. Cryptography ‘b_,@ 0
5. Scientific Computing |
6. Discrete Math 6

tasks precedence constraint graph

feasible schedule
44

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

1

edges in DAG define a “partial order” for vertices

0—5 02
A
0—1 36 \

35 34 ‘—@ p

52 6—4 C/ @
6—0 32

| =4 °

directed edges DAG

topological order

Directed graphs: quiz 4 o

Suppose that you want to topologically sort the vertices in a DAG.
Which graph-search algorithm should you use?

o N ® »

depth-first search

O,

breadth-first search é

either A or B Q\\A
O\

®

neither A nor B (_/® p
©,

6

DAG

topological order

46

Topological sort demo

« Run depth-first search. @
« Return vertices in reverse DFS postorder.

T

visit vertex after recursive calls tinyDAG?7.txt

/

11
O 5
0O 2
@ 0 1
3 6
3 5
3 4
3 >@ > 2
6 4
6 O
3 2

a directed acyclic graph

Topological sort demo

« Run depth-first search.

« Return vertices in reverse DFS postorder.

done

DFS postorder
4 1 2 5 0 6 3

topological order
(reverse DFS postorder)

3 6 05 21 4

48

Depth-first search: reverse postorder

public class DepthFirstOrder
{

private boolean[] marked;
private Stack<Integer> reversePostorder;

public DepthFirstOrder(Digraph G)

{
reversePostorder = new Stack<Integer>();
marked = new boolean[G.V()];
for (int v =0; v < G.VQ; v++)
if (Imarked[v]) dfs(G, v);
}
private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w]) dfs(G, w);
reversePostorder.push(v);
}

public Iterable<Integer> reversePostorder() returns all vertices in
{ return reversePostorder; } “reverse DFS postorder”

Topological sort in a DAG: intuition

Why is the reverse DFS postorder a topological order?
« First vertex in DFS postorder (last in topological order) has outdegree O.
« Second vertex in DFS postorder can point only to first vertex.

DFS postorder
4 1 25 0 6 3

@ topological order

(reverse DFS postorder)

3 6 0521 4

50

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge v—w. When dfs(v) is called:
dfs(0)

dfs (1)
dfs(4)
« Case 1: dfs(w) has already been called and returned. 4 done

. 1 d
— thus, w appears before v in DFS postorder dfs?z“;’

2 done
dfs(5)

« Case 2: dfs(w) has not yet been called.
5 done

- dfs(w) will get called directly or indirectly by dfs(v) 0 done

— so, dfs(w) will return before dfs(v) returns
V=3 —— dfs(3)

case 1 <EEE£E
(w=2,4,5)

— thus, w appears before v in DFS postorder

- Case 3: dfs(w) has already been called, case 2 dfs(6)
=6
but has not yet returned. S <
6 done
— function-call stack contains directed path from w to v 3 done

— edge v—w would complete a directed cycle
— contradiction (it's a DAQG)

done

51

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

« If directed cycle, topological order impossible.

« If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle.
Solution. DFS. What else? See textbook.

52

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

PAGE 3
DEPARTMENT COURSE DESCRIPTON PREREQS
COMPUTER CPSC Y32 | INTERMEDIATE CoMPILER | CPSC 432
SCIENCE DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

http://xkcd.com /754

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does directed cycle detection.

public class A extends B % javac A.java
{ A.java:l: cyclic inheritance
.. involving A
} public class A extends B { }
A
1 error

public class B extends C

{
}

public class C extends A

{
¥

54

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does directed cycle detection.

e O C Workbook1
< A B C D

1 "=B1+ 1" "=C1 + 1" "=A1 + 1"

2

3

4 - .

5

6 Microsoft Excel cannot calculate a formula.

7 u Cell references in the formula refer to the formula's

e result, creating a circular reference. Try one of the

8 following:

9 « |If you accidentally created the circular reference, click

10 OK. This will display the Circular Reference toolbar and

help for using it to correct your formula.

11 » To continue leaving the formula as it is, click Cancel.

12 (Cancel \ (OK)
13

14

15

16

17

18 |

14« » »i [Sheetl _ Sheet2 _ Sheet3 J
v

55

Digraph-processing summary: algorithms of the day

| TR 1
single-source b LIL .

reachability ‘paf;l‘ﬂj DFS/BFS
in a digraph ITH‘LIL;%HI
SERRRRE

shortest path
in a digraph

BFS

topological sort
in a DAG

DFS

