4.1 UNDIRECTED GRAPHS

- introduction
- graph API
- depth-first search
- breadth-first search
- challenges
4.1 Undirected Graphs

- introduction
- graph API
- depth-first search
- breadth-first search
- challenges
Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

- Thousands of practical applications.
- Hundreds of graph algorithms known.
- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.
Social networks

Vertex = person; edge = social relationship.

“Visualizing Friendships” by Paul Butler
Protein-protein interaction network

Vertex = protein; edge = interaction.

Reference: Jeong et al, Nature Review | Genetics
Graph applications

<table>
<thead>
<tr>
<th>graph</th>
<th>vertex</th>
<th>edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>communication</td>
<td>telephone, computer</td>
<td>fiber optic cable</td>
</tr>
<tr>
<td>circuit</td>
<td>gate, register, processor</td>
<td>wire</td>
</tr>
<tr>
<td>mechanical</td>
<td>joint</td>
<td>rod, beam, spring</td>
</tr>
<tr>
<td>financial</td>
<td>stock, currency</td>
<td>transactions</td>
</tr>
<tr>
<td>transportation</td>
<td>intersection</td>
<td>street</td>
</tr>
<tr>
<td>internet</td>
<td>class C network</td>
<td>connection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>social relationship</td>
<td>person</td>
<td>friendship</td>
</tr>
<tr>
<td>neural network</td>
<td>neuron</td>
<td>synapse</td>
</tr>
<tr>
<td>protein network</td>
<td>protein</td>
<td>protein–protein interaction</td>
</tr>
<tr>
<td>molecule</td>
<td>atom</td>
<td>bond</td>
</tr>
</tbody>
</table>
Graph terminology

Graph. Set of vertices connected pairwise by edges.

Path. Sequence of vertices connected by edges, with no repeated edges.

Def. Two vertices are **connected** if there is a path between them.

Cycle. Path (with \(\geq 1 \) edge) whose first and last vertices are the same.
Some graph-processing problems

<table>
<thead>
<tr>
<th>problem</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s–t path</td>
<td>Is there a path between s and t?</td>
</tr>
<tr>
<td>shortest s–t path</td>
<td>What is the shortest path between s and t?</td>
</tr>
<tr>
<td>cycle</td>
<td>Is there a cycle in the graph?</td>
</tr>
<tr>
<td>Euler cycle</td>
<td>Is there a cycle that uses each edge exactly once?</td>
</tr>
<tr>
<td>Hamilton cycle</td>
<td>Is there a cycle that uses each vertex exactly once?</td>
</tr>
<tr>
<td>connectivity</td>
<td>Is there a path between every pair of vertices?</td>
</tr>
<tr>
<td>biconnectivity</td>
<td>Is there a vertex whose removal disconnects the graph?</td>
</tr>
<tr>
<td>planarity</td>
<td>Can the graph be drawn in the plane with no crossing edges?</td>
</tr>
<tr>
<td>graph isomorphism</td>
<td>Are two graphs isomorphic?</td>
</tr>
</tbody>
</table>

Challenge. Which graph problems are easy? Difficult? Intractable?
4.1 **Undirected Graphs**

- introduction
- **graph API**
- depth-first search
- breadth-first search
- challenges
Graph representation

Graph drawing. Provides intuition about the structure of the graph.

![Different drawings of the same graph](image)

Caveat. Intuition can be misleading.
Graph representation

Vertex representation.
- This lecture: integers between 0 and $V - 1$.
- Applications: use **symbol table** to convert between names and integers.

Anomalies.
Graph API

public class Graph

 Graph(int V) create an empty graph with V vertices
 void addEdge(int v, int w) add an edge v–w
 Iterable<Integer> adj(int v) vertices adjacent to v
 int V() number of vertices

 // degree of vertex v in graph G
 public static int degree(Graph G, int v)
 {
 int count = 0;
 for (int w : G.adj(v))
 count++;
 return count;
 }

Note: this method is in full Graph API, so no need to re-implement
Graph representation: adjacency matrix

Maintain a V-by-V boolean array; for each edge v–w in graph:

$$\text{adj}[v][w] = \text{adj}[w][v] = \text{true}.$$
Which is the order of growth of running time of the following code fragment if the graph uses the **adjacency-matrix** representation, where \(V \) is the number of vertices and \(E \) is the number of edges?

```java
for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "-" + w);
```

- **A.** \(V \)
- **B.** \(E + V \)
- **C.** \(V^2 \)
- **D.** \(V \cdot E \)
Graph representation: adjacency lists

Maintain vertex-indexed array of lists.
Which is the order of growth of running time of the following code fragment if the graph uses the **adjacency-lists** representation, where \(V \) is the number of vertices and \(E \) is the number of edges?

A. \(V \)
B. \(E + V \)
C. \(V^2 \)
D. \(VE \)

```java
for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "-" + w);
```

```
print each edge twice
```
In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be **sparse** (not **dense**).
Graph representations

In practice. Use adjacency-lists representation.
- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be *sparse* (not dense).

<table>
<thead>
<tr>
<th>representation</th>
<th>space</th>
<th>add edge</th>
<th>edge between v and w?</th>
<th>iterate over vertices adjacent to v?</th>
</tr>
</thead>
<tbody>
<tr>
<td>list of edges</td>
<td>E</td>
<td>1</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>adjacency matrix</td>
<td>V^2</td>
<td>1 \dagger</td>
<td>1</td>
<td>V</td>
</tr>
<tr>
<td>adjacency lists</td>
<td>$E + V$</td>
<td>1</td>
<td>$\text{degree}(v)$</td>
<td>$\text{degree}(v)$</td>
</tr>
</tbody>
</table>

\dagger disallows parallel edges
Adjacency-list graph representation: Java implementation

```java
public class Graph {
    private final int V;
    private Bag<Integer>[] adj;

    public Graph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
        adj[w].add(v);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

adjacency lists (using Bag data type)
create empty graph with V vertices
add edge v-w (parallel edges and self-loops allowed)
iterator for vertices adjacent to v

https://algs4.cs.princeton.edu/41undirected/Graph.java.html
4.1 Undirected Graphs

- introduction
- graph API
- depth-first search
- breadth-first search
- challenges
Depth-first search

Goal. Systematically traverse a graph.

DFS (to visit a vertex v)

Mark vertex v.
Recursively visit all unmarked vertices w adjacent to v.

Typical applications.
- Find all vertices connected to a given vertex.
- Find a path between two vertices.
Depth-first search demo

To visit a vertex \(v \):
- Mark vertex \(v \).
- Recursively visit all unmarked vertices adjacent to \(v \).
Depth-first search demo

To visit a vertex v:
- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

Vertices connected to 0 (and associated paths)
Run DFS using the following adjacency-lists representation of graph G, starting at vertex 0. In which order is dfs(G, v) called?

A. 0 1 2 4 5 3 6
B. 0 1 2 4 5 6 3
C. 0 1 4 2 5 3 6
D. 0 1 2 6 4 5 3
Depth-first search: data structures

To visit a vertex v:
- Mark vertex v.
- Recursively visit all unmarked vertices adjacent to v.

Data structures.
- Boolean array `marked[]` to mark vertices.
- Integer array `edgeTo[]` to keep track of paths.
 - $(\text{edgeTo}[w] = v)$ means that edge v-w used to visit vertex w
- Function-call stack for recursion.
Design pattern for graph processing

Goal. Decouple graph data type from graph processing.
- Create a Graph object.
- Pass the Graph to a graph-processing routine.
- Query the graph-processing routine for information.

```java
public class Paths {
    Paths(Graph G, int s) // find paths in G connected to s
    boolean hasPathTo(int v) // is there a path between s and v?
    Iterable<Integer> pathTo(int v) // path between s and v; null if no such path

    Paths paths = new Paths(G, s);
    for (int v = 0; v < G.V(); v++)
        if (paths.hasPathTo(v))
            StdOut.println(v);
```

print all vertices connected to s
Depth-first search: Java implementation

```java
public class DepthFirstPaths {
    private boolean[] marked;
    private int[] edgeTo;
    private int s;

    public DepthFirstPaths(Graph G, int s) {
        ... 
        dfs(G, s);
    }

    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v)) {
            if (!marked[w]) {
                edgeTo[w] = v;
                dfs(G, w);
            }
        }
    }
}
```

- `marked[v] = true` if `v` connected to `s`
- `edgeTo[v] = previous vertex on path from `s` to `v`
- Initialize data structures
- Find vertices connected to `s`
- Recursive DFS does the work

Proposition. DFS marks all vertices connected to s.

Pf.

- If w marked, then w connected to s (why?)
- If w connected to s, then w marked.

 (If w unmarked, then consider the last edge on a path from s to w that goes from a marked vertex to an unmarked one).

skipped in lecture (see videos)
Depth-first search: properties

Proposition. DFS takes time proportional to $V + E$ in the worst case.

Pf.

- Initialize two arrays of length V.
- Each vertex is visited at most once.
 (visiting a vertex takes time proportional to its degree)

\[
degree(v_0) + degree(v_1) + degree(v_2) + \ldots = 2E
\]
Depth-first search: properties

Proposition. After DFS, can check if vertex v is connected to s in constant time; can find v–s path (if one exists) in time proportional to its length.

Pf. `edgeTo[]` is parent-link representation of a tree rooted at vertex s.

```java
public boolean hasPathTo(int v)
{
    return marked[v];
}

g public Iterable<Integer> pathTo(int v)
{
    if (!hasPathTo(v)) return null;
    Stack<Integer> path = new Stack<Integer>();
    for (int x = v; x != s; x = edgeTo[x])
        path.push(x);
    path.push(s);
    return path;
}
```

![Graph with edgeTo[] table and trace of pathTo() computation]
Problem. Implement flood fill (Photoshop magic wand).
4.1 Undirected Graphs

- introduction
- graph API
- depth-first search
- breadth-first search
- challenges
Graph search. Many ways to explore a graph.

- DFS preorder: vertices in order of calls to $\text{dfs}(G, v)$.
- DFS postorder: vertices in order of returns from $\text{dfs}(G, v)$.
- Breadth-first: vertices in increasing order of distance from s.
Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

![Graph G](image-url)
Breadth-first search demo

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

<table>
<thead>
<tr>
<th>v</th>
<th>edgeTo[]</th>
<th>distTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

done
Breadth-first search

Repeat until queue is empty:

- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent to v and mark them.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
- remove the least recently added vertex v
- add each of v's unmarked neighbors to the queue, and mark them.
Breadth-first search: Java implementation

```java
public class BreadthFirstPaths {
    private boolean[] marked;
    private int[] edgeTo;
    private int[] distTo;
    ...

    private void bfs(Graph G, int s) {
        Queue<Integer> q = new Queue<Integer>();
        q.enqueue(s);
        marked[s] = true;
        distTo[s] = 0;

        while (!q.isEmpty()) {
            int v = q.dequeue();
            for (int w : G.adj(v)) {
                if (!marked[w]) {
                    q.enqueue(w);
                    marked[w] = true;
                    edgeTo[w] = v;
                    distTo[w] = distTo[v] + 1;
                }
            }
        }
    }
}
```

initialize FIFO queue of vertices to explore

found new vertex w via edge v–w

https://algs4.cs.princeton.edu/41undirected/BreadthFirstPaths.java.html
Breadth-first search properties

Proposition. In any connected graph G, BFS computes shortest paths from s to all other vertices in time proportional to $E + V$.

Pf idea. BFS examines vertices in increasing distance from s.

Graph G

- Vertices: 0, 1, 2, 3, 4, 5, 6
- Edges: (0, 1), (0, 2), (0, 3), (1, 2), (1, 4), (2, 4), (2, 5), (3, 6)

Distance Levels

- **dist = 0**: Vertices 0 and 2
- **dist = 1**: Vertices 1, 4, and 5
- **dist = 2**: Vertices 3 and 6

Invariant: queue consists of ≥ 0 vertices of distance k from s, followed by ≥ 0 vertices of distance $k+1$
Breadth-first search application: routing

Fewest number of hops in a communication network.

ARPANET, July 1977
Breadth-first search application: Kevin Bacon numbers

THE ORACLE OF BACON

Bernard Chazelle has a Bacon number of 3.

Find a different link

Guy and Madeline on a Park Bench (2009)

Anna Chazelle

La La Land (2016/I)

Ryan Gosling

Crazy, Stupid, Love. (2011)

Kevin Bacon

https://oracleofbacon.org

Endless Games board game

SixDegrees iPhone App
Kevin Bacon graph

- Include one vertex for each performer and one for each movie.
- Connect a movie to all performers that appear in that movie.
- Compute shortest path from $s = \text{Kevin Bacon}$.
Breadth-first search application: Erdös numbers

hand-drawing of part of the Erdös graph by Ron Graham
4.1 Undirected Graphs

- introduction
- graph API
- depth-first search
- breadth-first search
- challenges

https://algs4.cs.princeton.edu
Problem. Identify connected components.

How difficult?

A. Any programmer could do it.
B. Diligent algorithms student could do it.
C. Hire an expert.
D. Intractable.
E. No one knows.
Problem. Identify connected components.

Particle detection. Given grayscale image of particles, identify “blobs.”
- Vertex: pixel.
- Edge: between two adjacent pixels with grayscale value ≥ 70.
- Blob: connected component of 20–30 pixels.
Graph-processing challenge 2

Problem. Is a graph bipartite?

How difficult?

A. Any programmer could do it.
B. Diligent algorithms student could do it.
C. Hire an expert.
D. Intractable.
E. No one knows.
Graph-processing challenge 3

Problem. Find a cycle in a graph (if one exists).

How difficult?

A. Any programmer could do it.
B. Diligent algorithms student could do it.
C. Hire an expert.
D. Intractable.
E. No one knows.
Problem. Is there a (general) cycle that uses every edge exactly once?

How difficult?

A. Any programmer could do it.
B. Diligent algorithms student could do it.
C. Hire an expert.
D. Intractable.
E. No one knows.
Problem. Is there a cycle that uses every vertex exactly once?

How difficult?

A. Any programmer could do it.
B. Diligent algorithms student could do it.
C. Hire an expert.
D. Intractable.
E. No one knows.
Graph-processing challenge 6

Problem. Are two graphs identical except for vertex names?

How difficult?

A. Any programmer could do it.
B. Diligent algorithms student could do it.
C. Hire an expert.
D. Intractable.
E. No one knows.
Problem. Can you draw a graph in the plane with no crossing edges?

How difficult?

A. Any programmer could do it.
B. Diligent algorithms student could do it.
C. Hire an expert.
D. Intractable.
E. No one knows

try it yourself at http://planarity.net
Graph traversal summary

BFS and DFS enables efficient solution of many (but not all) graph problems.

<table>
<thead>
<tr>
<th>graph problem</th>
<th>BFS</th>
<th>DFS</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>s–t path</td>
<td>✔</td>
<td>✔</td>
<td>$E + V$</td>
</tr>
<tr>
<td>shortest s–t path</td>
<td>✔</td>
<td></td>
<td>$E + V$</td>
</tr>
<tr>
<td>cycle</td>
<td>✔</td>
<td>✔</td>
<td>V</td>
</tr>
<tr>
<td>Euler cycle</td>
<td></td>
<td>✔</td>
<td>$E + V$</td>
</tr>
<tr>
<td>Hamilton cycle</td>
<td></td>
<td></td>
<td>$2^{1.657V}$</td>
</tr>
<tr>
<td>bipartiteness (odd cycle)</td>
<td>✔</td>
<td>✔</td>
<td>$E + V$</td>
</tr>
<tr>
<td>connected components</td>
<td>✔</td>
<td>✔</td>
<td>$E + V$</td>
</tr>
<tr>
<td>biconnected components</td>
<td></td>
<td>✔</td>
<td>$E + V$</td>
</tr>
<tr>
<td>planarity</td>
<td></td>
<td>✔</td>
<td>$E + V$</td>
</tr>
<tr>
<td>graph isomorphism</td>
<td></td>
<td></td>
<td>$2^{c \ln^3 V}$</td>
</tr>
</tbody>
</table>