

Robert Sedgewick \| Kevin Wayne

4.1 Undirected Graphs

- introduction
- graph API
- depth-first search
- breadth-first search
- challenges
https://algs4.cs.princeton.edu

4.1 Undirected Graphs

- introduction

Robert Sedgewick | Kevin Wayne

- graph API
depth-first search
, breadth-first search
- challenges
https://algs4.cs.princeton.edu

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

- Thousands of practical applications.
- Hundreds of graph algorithms known.
- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.

Social networks

Vertex $=$ person; edge $=$ social relationship.

facebook

Protein-protein interaction network

Vertex $=$ protein; edge $=$ interaction.

Reference: Jeong et al, Nature Review | Genetics

Graph applications

graph	vertex	edge
communication	telephone, computer	fiber optic cable
circuit	gate, register, processor	wire
mechanical	joint	rod, beam, spring
financial	stock, currency	transactions
transportation	intersection	street
internet	class C network	connection
game	board position	legal move
social relationship	neuron	friendship
neural network	protein	synapse
protein network	atom	protein-protein interaction
molecule		

Graph terminology

Graph. Set of vertices connected pairwise by edges.
Path. Sequence of vertices connected by edges, with no repeated edges.
Def. Two vertices are connected if there is a path between them.
Cycle. Path (with ≥ 1 edge) whose first and last vertices are the same.
path between 0 and 2 (of length 3)

Some graph-processing problems

problem	description
s-t path	Is there a path between s and $t ?$
shortest s-t path	What is the shortest path between s and $t ?$
cycle	Is there a cycle in the graph?
Euler cycle	Is there a cycle that uses each edge exactly once?
Hamilton cycle	Is there a cycle that uses each vertex exactly once ?

Challenge. Which graph problems are easy? Difficult? Intractable?

4.1 Undirected Graphs

- introduction

- graph API

Algorithms

Robert Sedgewick | Kevin Wayne
depth -first search

- breadth-first search - challenges

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

different drawings of the same graph
Caveat. Intuition can be misleading.

Graph representation

Vertex representation.

- This lecture: integers between 0 and $V-1$.
- Applications: use symbol table to convert between names and integers.

Anomalies.

Graph API

Graph representation: adjacency matrix
Maintain a V-by- V boolean array; for each edge $v-w$ in graph: $\operatorname{adj}[v][w]=\operatorname{adj}[w][v]=\operatorname{true}$.
two entries

per edge

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	1	1	0	0	1	1	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	1	1	0	0	0	0	0	0	0
4	0	0	0	1	0	1	1	0	0	0	0	0	0
5	1	0	0	1	1	0	0	0	0	0	0	0	0
6	1	0	0	0	1	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	1	0	0	0	0
8	0	0	0	0	0	0	0	1	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1
10	0	0	0	0	0	0	0	0	0	1	0	0	0
11	0	0	0	0	0	0	0	0	0	1	0	0	1
12	0	0	0	0	0	0	0	0	0	1	0	1	0

Which is the order of growth of running time of the following code fragment if the graph uses the adjacency-matrix representation, where V is the number of vertices and E is the number of edges?

```
for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "-" + w);
```

print each edge twice
A. $\quad V$
B. $E+V$
C. $\quad V^{2}$
D. $V E$

	0	1	2	3	4	5	6	7
0	0	1	1	0	0	1	1	0
1	1	0	0	0	0	0	0	0
2	1	0	0	0	0	0	0	0
3	0	0	0	0	1	1	0	0
4	0	0	0	1	0	1	1	0
5	1	0	0	1	1	0	0	0
6	1	0	0	0	1	0	0	0
7	0	0	0	0	0	0	0	0
	adjacency-matrix representation							

Graph representation: adjacency lists

Maintain vertex-indexed array of lists.

Undirected graphs: quiz 2
Which is the order of growth of running time of the following code fragment if the graph uses the adjacency-lists representation, where V is the number of vertices and E is the number of edges?

```
for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "-" + w);
```

print each edge twice
A. $\quad V$
B. $E+V$
C. $\quad V^{2}$
D. $V E$

Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse (not dense).

proportional
to V^{2} edges

dense $(E=1000)$

Two graphs ($\mathrm{V}=50$)

Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be sparse (not dense).

Adjacency-list graph representation: Java implementation

```
public class Graph
{
    private final int V;
    private Bag<Integer>[] adj;
    pub1ic Graph(int V)
    {
    this.V = V;
    adj = (Bag<Integer>[]) new Bag[V];
    for (int v = 0; v < V; v++)
        adj[v] = new Bag<Integer>();
}
public void addEdge(int v, int w)
{
    adj[v].add(w);
    adj[w].add(v);
}
pub1ic Iterable<Integer> adj(int v)
{ return adj[v]; }

```

adjacency lists

```

``` (using Bag data type)
create empty graph with V vertices
add edge \(v\) - \(w\)
(parallel edges and
self-loops allowed)

\subsection*{4.1 UNDIRECTED GRAPHS}

\section*{Algorithms}

Robert Sedgewick | Kevin Wayne

\section*{- introduction}
- graph API
- depth-first search
- breadth-first search
challenges
https://algs4.cs.princeton.edu

\section*{Depth-first search}

Goal. Systematically traverse a graph.

DFS (to visit a vertex v)
Mark vertex v .
Recursively visit all unmarked
vertices \(\mathbf{w}\) adjacent to \(v\).

Typical applications.
- Find all vertices connected to a given vertex.
- Find a path between two vertices.

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\).
- Recursively visit all unmarked vertices adjacent to \(v\).

graph G

\section*{Depth-first search demo}

To visit a vertex \(v\) :
- Mark vertex \(v\).
- Recursively visit all unmarked vertices adjacent to \(v\).

\begin{tabular}{ccc}
\(\mathbf{v}\) & marked[] & edgeTo[] \\
\hline 0 & T & - \\
1 & T & 0 \\
2 & T & 0 \\
3 & T & 5 \\
4 & T & 6 \\
5 & T & 4 \\
6 & T & 0 \\
7 & F & - \\
8 & F & - \\
9 & F & - \\
10 & F & - \\
11 & F & - \\
12 & F & -
\end{tabular}
vertices connected to 0
(and associated paths)

Undirected graphs: quiz 3
Run DFS using the following adjacency-lists representation of graph \(G\), starting at vertex 0 . In which order is dfs(G, v) called?

DFS preorder
A. 0124536
B. 0124563
C. 0142536
D. 0126453

\section*{Depth-first search: data structures}

To visit a vertex \(v\) :
- Mark vertex \(v\).
- Recursively visit all unmarked vertices adjacent to \(v\).

\section*{Data structures.}
- Boolean array marked[] to mark vertices.
- Integer array edgeTo[] to keep track of paths. (edgeTo \([w]==v\)) means that edge \(v-w\) used to visit vertex \(w\)
- Function-call stack for recursion.

\section*{Design pattern for graph processing}

Goal. Decouple graph data type from graph processing.
- Create a Graph object.
- Pass the Graph to a graph-processing routine.
- Query the graph-processing routine for information.
```

public class Paths

```
\begin{tabular}{|c|c|c|}
\hline & Paths(Graph G, int s) & find paths in \(G\) connected to \(s\) \\
\hline boolean & hasPathTo(int v) & is there a path between \(s\) and \(v\) ? \\
\hline Iterable<Integer> & pathTo(int v) & betweens and v; null if no such path \\
\hline
\end{tabular}
```

Paths paths = new Paths(G, s);
for (int v = 0; v < G.V(); v++)
if (paths.hasPathTo(v))
StdOut.println(v);

## Depth-first search: Java implementation

```
public class DepthFirstPaths
{
 private boolean[] marked;
 private int[] edgeTo;
 private int s;
```



```
 marked[v] = true
if v connected to s
edgeTo[v] = previous
vertex on path from s to v
 public DepthFirstPaths(Graph G, int s)
 {
 dfs(G, s);
 }
 private void dfs(Graph G, int v)
 {
 marked[v] = true;
 for (int w : G.adj(v))
 if (!marked[w])
 {
 edgeTo[w] = v;
 dfs(G, w);
 }
}
}
https://algs4.cs.princeton.edu/41undirected/DepthFirstPaths.java.html
```


## Depth-first search: properties

Proposition. DFS marks all vertices connected to $s$.

Pf.

- If $w$ marked, then $w$ connected to $s$ (why?)
- If $w$ connected to $s$, then $w$ marked. (if $w$ unmarked, then consider the last edge on a path from $s$ to $w$ that goes from a marked vertex to an unmarked one).



## Depth-first search: properties

Proposition. DFS takes time proportional to $V+E$ in the worst case.

Pf.

- Initialize two arrays of length $V$.
- Each vertex is visited at most once. (visiting a vertex takes time proportional to its degree)
$\operatorname{degree}\left(v_{0}\right)+\operatorname{degree}\left(v_{1}\right)+\operatorname{degree}\left(v_{2}\right)+\ldots=2 E$


## Depth-first search: properties

Proposition. After DFS, can check if vertex $v$ is connected to $s$ in constant time; can find $v-s$ path (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at vertex s.

```
public boolean hasPathTo(int v)
{ return marked[v]; }
public Iterable<Integer> pathTo(int v)
{
 if (!hasPathTo(v)) return nul1;
 Stack<Integer> path = new Stack<Integer>();
 for (int x = v; x != s; x = edgeTo[x])
 path.push(x);
 path.push(s);
 return path;
}
```



## FLOOD FIL

Problem. Implement flood fill (Photoshop magic wand).


### 4.1 Undirected Graphs

## Algorithms

Robert Sedgewick | Kevin Wayne

## - insroduction

- graph API
depthfirst seorch
- breadth-first search
- challenges
https://algs4.cs.princeton.edu


## Graph search

Tree traversal. Many ways to explore a binary tree.

- Inorder: A C E H M R S X
- Preorder: S E A C R H M X
stack/recursion
- Postorder: C A M H R E X S
- Level-order: S E X A R C H M


Graph search. Many ways to explore a graph.

- DFS preorder: vertices in order of calls to dfs (G, v).
- DFS postorder: vertices in order of returns from dfs (G, v).
- Breadth-first: vertices in increasing order of distance from s.


## Breadth-first search demo

Repeat until queue is empty:

- Remove vertex $v$ from queue.
- Add to queue all unmarked vertices adjacent to $v$ and mark them.

graph G


## Breadth-first search demo

Repeat until queue is empty:

- Remove vertex $v$ from queue.
- Add to queue all unmarked vertices adjacent to $v$ and mark them.


$\mathbf{v}$	edgeTo[]	distTo[]
0	-	0
1	0	1
2	0	1
3	2	2
4	2	2
5	0	1
6	3	3

done

## Breadth-first search

Repeat until queue is empty:

- Remove vertex $v$ from queue.
- Add to queue all unmarked vertices adjacent to $v$ and mark them.


## BFS (from source vertex s)

Put $s$ onto a FIFO queue, and mark $s$ as visited.
Repeat until the queue is empty:

- remove the least recently added vertex $v$
- add each of v's unmarked neighbors to the queue, and mark them.


## Breadth-first search: Java implementation

```
public class BreadthFirstPaths
{
 private boolean[] marked;
 private int[] edgeTo;
 private int[] distTo;
 private void bfs(Graph G, int s) {
 Queue<Integer> q = new Queue<Integer>();
 q.enqueue(s);
 marked[s] = true;
 distTo[s] = 0;
 while (!q.isEmpty()) {
 int v = q.dequeue();
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 q.enqueue(w);
 marked[w] = true;
 edgeTo[w] = v;
 distTo[w] = distTo[v] + 1;
 }
 }
 }
 }
}
initialize FIFO queue of vertices to explore

\section*{Breadth-first search properties}

Proposition. In any connected graph \(G\), BFS computes shortest paths from \(s\) to all other vertices in time proportional to \(E+V\).

Pf idea. BFS examines vertices in increasing distance from \(s\).
invariant: queue consists of \(\geq 0\) vertices of distance \(k\) from \(s\), followed by \(\geq 0\) vertices of distance \(k+1\)

graph G

\section*{Breadth-first search application: routing}

Fewest number of hops in a communication network.

(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS
NAMES SHOWN ARE IMP NAMES, NOT (NECESSARILY) HOST NAMES

ARPANET, July 1977

\section*{Breadth-first search application: Kevin Bacon numbers}

https://oracleofbacon.org

Endless Games board game

SixDegrees iPhone App

\section*{Kevin Bacon graph}
- Include one vertex for each performer and one for each movie.
- Connect a movie to all performers that appear in that movie.
- Compute shortest path from \(s=\) Kevin Bacon.

\section*{Breadth-first search application: Erdös numbers}

hand-drawing of part of the Erdös graph by Ron Graham

\subsection*{4.1 Undirected Graphs}

\section*{- insroduction}
- graph API

\section*{Algorithms}

Robert Sedgewick | Kevin Wayne

Idepth-first secich
breadth-first search
- challenges

Problem. Identify connected components.

\section*{How difficult?}

A. Any programmer could do it.
B. Diligent algorithms student could do it.
C. Hire an expert.
D. Intractable.
E. No one knows.

Problem. Identify connected components.

Particle detection. Given grayscale image of particles, identify "blobs."
- Vertex: pixel.
- Edge: between two adjacent pixels with grayscale value \(\geq 70\).
- Blob: connected component of 20-30 pixels.

Graph-processing challenge 2
Problem. Is a graph bipartite?

How difficult?
A. Any programmer could do it.
B. Diligent algorithms student could do it.

C. Hire an expert.
D. Intractable.
E. No one knows.

Problem. Find a cycle in a graph (if one exists).

How difficult?
A. Any programmer could do it.
B. Diligent algorithms student could do it.

\(0-5-4-6-0\)
C. Hire an expert.
D. Intractable.
E. No one knows.

Problem. Is there a (general) cycle that uses every edge exactly once?

How difficult?
A. Any programmer could do it.

B. Diligent algorithms student could do it.
C. Hire an expert.
D. Intractable.
E. No one knows.

Problem. Is there a cycle that uses every vertex exactly once?

How difficult?
A. Any programmer could do it.

B. Diligent algorithms student could do it.
C. Hire an expert.
\(0-5-3-4-6-2-1-0\)
D. Intractable.
E. No one knows.

Graph-processing challenge 6
Problem. Are two graphs identical except for vertex names?

How difficult?
A. Any programmer could do it.

B. Diligent algorithms student could do it.
C. Hire an expert.
D. Intractable.
E. No one knows.

Problem. Can you draw a graph in the plane with no crossing edges?
try it yourself at http://planarity.net

How difficult?
A. Any programmer could do it.
B. Diligent algorithms student could do it.
C. Hire an expert.
D. Intractable.
E. No one knows

Graph traversal summary
BFS and DFS enables efficient solution of many (but not all) graph problems.
\begin{tabular}{|c|c|c|c|}
\hline graph problem & BFS & DFS & time \\
\hline s-t path & \(\checkmark\) & \(\checkmark\) & \(E+V\) \\
\hline shortest s-t path & \(\checkmark\) & & \(E+V\) \\
\hline cycle & \(\checkmark\) & \(\checkmark\) & V \\
\hline Euler cycle & & \(\checkmark\) & \(E+V\) \\
\hline Hamilton cycle & & & \(2^{1.657 V}\) \\
\hline bipartiteness (odd cycle) & \(\checkmark\) & \(\checkmark\) & \(E+V\) \\
\hline connected components & \(\checkmark\) & \(\checkmark\) & \(E+V\) \\
\hline biconnected components & & \(\checkmark\) & \(E+V\) \\
\hline planarity & & \(\checkmark\) & \(E+V\) \\
\hline graph isomorphism & & & \(2^{c \ln ^{3} V}\) \\
\hline
\end{tabular}```

