
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 10/17/19 10:37 AM

3.4 HASH TABLES

‣ hash functions

‣ separate chaining

‣ linear probing

‣ context

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

 Yet we should not pass up our opportunities in that critical 3%. ”

Premature optimization

2

 We should forget about small efficiencies, say about 97% of the time:  
 premature optimization is the root of all evil.

 “ Programmers waste enormous amounts of time thinking about,
 or worrying about, the speed of noncritical parts of their programs,
 and these attempts at efficiency actually have a strong negative
 impact when debugging and maintenance are considered.

Symbol table implementations: summary

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q. Can we do better?

A. Yes, but with different access to the data.
3

† under suitable technical assumptions

implementation

guarantee average case
ordered

ops?
key

interface
search insert delete search insert delete

sequential search 
(unordered list) n n n n n n equals()

binary search 
(ordered array) log n n n log n n n ✔ compareTo()

BST n n n log n log n √ n ✔ compareTo()

red–black BST log n log n log n log n log n log n ✔ compareTo()

hashing n n n 1 † 1 † 1 †
equals()

hashCode()

4

Hashing: basic plan

Save key–value pairs in a key-indexed table (index is a function of the key).

 
Hash function. Method for computing array index from key.

 
 
 
Issues.

・Computing the hash function.

・Equality test: Method for checking whether two keys are equal.

・Collision resolution: Algorithm and data structure 
to handle two keys that hash to the same array index.

 
Classic space–time tradeoff.

・No space limitation: trivial hash function with key as index.

・No time limitation: trivial collision resolution with sequential search.

・Space and time limitations: hashing (the real world).

hash("CA") = 3

0

1

2

3

4

5

…

99

hash("NJ") = 3

hash("PA") = 1

"NJ"

"PA"

5

Equality test

All Java classes inherit a method equals().

 

 

Java requirements. For any references x, y and z:

・Reflexive: x.equals(x) is true.

・Symmetric: x.equals(y) iff y.equals(x).

・Transitive: if x.equals(y) and y.equals(z), then x.equals(z).

・Non-null: x.equals(null) is false.

 
 
 
Default implementation. (x == y)

Customized implementations. Integer, Double, String, java.net.URL, …

User-defined implementations. Some care needed.

do x and y refer to
the same object?

equivalence 
relation

Seems easy.

Implementing equals for user-defined types

6

public class Date
{
 private final int month;
 private final int day;
 private final int year;
 ...

 public boolean equals(Date that)
 { 
 
 
 
 
 
 
 
 
 
 
 
 
 }
}

check that all significant  
fields are the same

if (this.day != that.day) return false;
if (this.month != that.month) return false;
if (this.year != that.year) return false;
return true;

Seems easy, but requires some care.

public class Date
{
 private final int month;
 private final int day;
 private final int year;
 ...

 public boolean equals(Object y)
 { 
 
 
 
 
 
 
 
 
 
 
 
 
 }
}

if (y == this) return true;

if (y == null) return false;

if (y.getClass() != this.getClass())
 return false;

if (this.day != that.day) return false;
if (this.month != that.month) return false;
if (this.year != that.year) return false;
return true;

Implementing equals for user-defined types

7

typically unsafe to use equals() with inheritance
(would violate symmetry)

objects must be in the same class 
(religion: getClass() vs. instanceof) 

check for null

optimization (for reference equality)

check that all significant  
fields are the same

cast is now guaranteed to succeed

must be Object.
Why? Experts still debate.

final

Date that = (Date) y;

8

Equals design

“Standard” recipe for user-defined types.

・Optimization for reference equality.

・Check against null.

・Check that two objects are of the same type; cast.

・Compare each significant field:

– if field is a primitive type, use ==

– if field is an object, use equals() and apply rule recursively

– if field is an array of primitives, use Arrays.equals()

– if field is an array of objects, use Arrays.deepEquals()

 
Best practices.

・Do not use calculated fields that depend on other fields.

・Compare fields mostly likely to differ first.

・Make compareTo() consistent with equals().

x.equals(y) if and only if (x.compareTo(y) == 0)

but use Double.compare() for double
(to deal with –0.0 and NaN)

e.g., cached Manhattan distance

tedious bu t

nece ssar y

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ hash functions

‣ separate chaining

‣ linear probing

‣ context

3.4 HASH TABLES

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

10

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.

key

table
index

11

Computing the hash function

Idealistic goal. Scramble the keys uniformly to produce a table index.

・Efficiently computable.

・Each table index equally likely for each key.

 
 
 
 
Ex 1. Last 4 digits of Social Security number.

Ex 2. Last 4 digits of phone number.

 
Practical challenge. Need different approach for each key type.

thoroughly researched problem,
still problematic in practical applications

key

table
index

Which is the last digit of your day of birth?  

A. 0 or 1

B. 2 or 3

C. 4 or 5

D. 6 or 7

E. 8 or 9

12

Hash tables: quiz 1

Which is the last digit of your year of birth?  

A. 0 or 1

B. 2 or 3

C. 4 or 5

D. 6 or 7

E. 8 or 9

13

Hash tables: quiz 2

14

Java’s hash code conventions

All Java classes inherit a method hashCode(), which returns a 32-bit int.

 
 
Requirement. If x.equals(y), then (x.hashCode() == y.hashCode()).

Highly desirable. If !x.equals(y), then (x.hashCode() != y.hashCode()).

 
 
 
 
 
 
 
Default implementation. Memory address of x.

Legal (but useless) implementation. Always return 17.

Customized implementations. Integer, Double, String, java.net.URL, …

User-defined types. Users are on their own.

x.hashCode()

x

y.hashCode()

y

15

Implementing hash code: integers, booleans, and doubles

public final class Integer
{
 private final int value;
 ...

}

public final class Double
{
 private final double value;
 ...
  
 
 
 
 

}

Java library implementations

public int hashCode()
{ return value; }

public int hashCode()
{
 long bits = doubleToLongBits(value);
 return (int) (bits ^ (bits >>> 32));
}

convert to IEEE 64-bit representation; 
xor most significant 32-bits 
with least significant 32-bits

Warning: -0.0 and +0.0 have different hash codes

16

Implementing hash code: arrays

31x + y rule.

・Initialize hash to 1.

・Repeatedly multiply hash by 31 and add next integer in array.

public class Arrays
{
 ...

 
 
 
}

public static int hashCode(int[] a) {
 if (a == null)
 return 0;

 int hash = 1;
 for (int i = 0; i < a.length; i++)
 hash = 31*hash + a[i];
 return hash;
 } 31x + y rule

special case for null

Java library implementation

prime

17

Implementing hash code: strings

Treat a string as an array of characters.

public class String
{
 private final char[] s;
 ⋮

 
 
}

public int hashCode()
{
 int hash = 0;
 for (int i = 0; i < length(); i++)
 hash = s[i] + (31 * hash);
 return hash;
} 31x + y rule

Java library implementation

char Unicode

… …

'a' 97

'b' 98

'c' 99

… ...

recall: char is an integral type in Java
(and overflow is well defined)

18

Aside: string hash collisions in Java

2n strings of length 2n that all hash to the same value!

key hashCode()

"AaAaAaAa" -540425984

"AaAaAaBB" -540425984

"AaAaBBAa" -540425984

"AaAaBBBB" -540425984

"AaBBAaAa" -540425984

"AaBBAaBB" -540425984

"AaBBBBAa" -540425984

"AaBBBBBB" -540425984

key hashCode()

"BBAaAaAa" -540425984

"BBAaAaBB" -540425984

"BBAaBBAa" -540425984

"BBAaBBBB" -540425984

"BBBBAaAa" -540425984

"BBBBAaBB" -540425984

"BBBBBBAa" -540425984

"BBBBBBBB" -540425984

key hashCode()

"Aa" 2112

"BB" 2112

Java fai l

19

War story: algorithmic complexity attacks

A Java bug report.

Description

Comment 2

Comment 11

Format For Printing - XML - Clone This Bug - Last CommentBug 750533 - (CVE-2012-2739) CVE-2012-2739 java: hash table collisions
CPU usage DoS (oCERT-2011-003)

Status: ASSIGNED

Aliases: CVE-2012-2739 (edit)

Product: Security Response
Component: vulnerability (Show other bugs)

Version(s): unspecified
Platform: All Linux

Priority: medium Severity: medium
Target Milestone: ---

Target Release: ---
Assigned To: Red Hat Security Response Team
QA Contact:

URL:
Whiteboard: impact=moderate,public=20111228,repor...

Keywords: Reopened, Security

Depends On:
Blocks: hashdos/oCERT-2011-003 750536

 Show dependency tree / graph

Reported: 2011-11-01 10:13 EDT by Jan Lieskovsky
Modified: 2012-11-27 10:50 EST (History)

CC List: 8 users (show)

See Also:
Fixed In Version:

Doc Type: Bug Fix
Doc Text:
Clone Of:

Environment:
Last Closed: 2011-12-29 07:40:08

Attachments (Terms of Use)

Add an attachment (proposed patch, testcase, etc.)

Groups: None (edit)

Jan Lieskovsky 2011-11-01 10:13:47 EDT

Julian Wälde and Alexander Klink reported that the String.hashCode() hash function is not sufficiently collision
resistant. hashCode() value is used in the implementations of HashMap and Hashtable classes:

http://docs.oracle.com/javase/6/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/6/docs/api/java/util/Hashtable.html

A specially-crafted set of keys could trigger hash function collisions, which can degrade performance of HashMap
or Hashtable by changing hash table operations complexity from an expected/average O(1) to the worst case O(n).
Reporters were able to find colliding strings efficiently using equivalent substrings and meet in the middle
techniques.

This problem can be used to start a denial of service attack against Java applications that use untrusted inputs
as HashMap or Hashtable keys. An example of such application is web application server (such as tomcat, see bug
#750521) that may fill hash tables with data from HTTP request (such as GET or POST parameters). A remote
attack could use that to make JVM use excessive amount of CPU time by sending a POST request with large amount
of parameters which hash to the same value.

This problem is similar to the issue that was previously reported for and fixed
in e.g. perl:
 http://www.cs.rice.edu/~scrosby/hash/CrosbyWallach_UsenixSec2003.pdf

Jan Lieskovsky 2011-11-01 10:18:44 EDT

Acknowledgements:

Red Hat would like to thank oCERT for reporting this issue. oCERT acknowledges Julian Wälde and Alexander Klink
as the original reporters.

Tomas Hoger 2011-12-29 07:23:27 EST

This issue was presented on 28C3:
http://events.ccc.de/congress/2011/Fahrplan/events/4680.en.html

Details were posted to full-disclosure:
http://seclists.org/fulldisclosure/2011/Dec/477

public final class Transaction 
{ 
 private final String who; 
 private final Date when; 
 private final double amount;  
 
 public Transaction(String who, Date when, double amount) 
 { /* as before */ } 
 
 public boolean equals(Object y)  
 { /* as before */ } 
 
 ... 
 
 
 
 
 
 
 
 
 
 
 
}

public int hashCode()  
{
 int hash = 1;
 hash = 31*hash + who.hashCode();
 hash = 31*hash + when.hashCode();
 hash = 31*hash + ((Double) amount).hashCode();
 return hash; 
}

20

Implementing hash code: user-defined types

for primitive types,
use hashCode() 
of wrapper type

for reference types,
use hashCode()

public final class Transaction 
{ 
 private final String who; 
 private final Date when; 
 private final double amount;  
 
 public Transaction(String who, Date when, double amount) 
 { /* as before */ } 
 
 public boolean equals(Object y)  
 { /* as before */ } 
 
 ... 
 
 
 
 
 
 
 
}

public int hashCode()  
{
 return Objects.hash(who, when, amount);  
}

21

Implementing hash code: user-defined types

shorthand

22

Hash code design

“Standard” recipe for user-defined types.

・Combine each significant field using the 31x + y rule.

・Shortcut 1: use Objects.hash() for all fields (except arrays).

・Shortcut 2: use Arrays.hashCode() for primitive arrays.

・Shortcut 3: use Arrays.deepHashCode() for object arrays.

 
 
In practice. Recipe above works reasonably well; used in Java libraries.

In theory. Keys are bitstring; “universal” family of hash functions exist.

 
 
 
Basic rule. Need to use the whole key to compute hash code; 
consult an expert for state-of-the-art hash codes.

awkward in Java since only
one (deterministic) hashCode()

Which function maps hashable keys to integers between 0 and m-1 ?  
 
 

A.  

 

B.  

 

C. Both A and B. 

D. Neither A nor B.

23

Hash tables: quiz 3

 private int hash(Key key)
 { return Math.abs(key.hashCode()) % m; }

x.hashCode()

x

hash(x)

 private int hash(Key key)
 { return key.hashCode() % m; }

Hash code. An int between −231 and 231 − 1.

Hash function. An int between 0 and m - 1 (for use as array index).

24

Modular hashing

typically a prime or power of 2

bug

 private int hash(Key key)
 { return (key.hashCode() & 0x7fffffff) % m; }

correct

1-in-a-billion bug

hashCode() of "polygenelubricants" is -231

x.hashCode()

x

hash(x)

 private int hash(Key key)
 { return Math.abs(key.hashCode()) % m; }

 private int hash(Key key)
 { return key.hashCode() % m; }

if m is a power of 2, can use
key.hashCode() & (m-1)

25

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an

integer between 0 and m - 1.

 
Bins and balls. Throw balls uniformly at random into m bins.

 
 
 
 
 
Bad news. [birthday problem]

・In a random group of 23 people, more likely than not that two people

share the same birthday.

・Expect two balls in the same bin after ~ tosses.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m = 16 bins, n = 11 balls

�
�

� m / 2
<latexit sha1_base64="aX4NUvA8zSo5tYo+d4Fmsxn78aU=">AAACTHicbVDLSgMxFM3U97vVpZtgEVxInSmCBTeCG5cKVoVOKZn0tg1NMmNyRyxD936NW/0K9/6HOxHM1FnY6oFcDue+ck+USGHR99+90tz8wuLS8srq2vrG5la5sn1j49RwaPJYxuYuYhak0NBEgRLuEgNMRRJuo+F5nr99AGNFrK9xlEBbsb4WPcEZOqlT3gutUDQ8paG9N5iFiaDhIVV5OMoDrY875apf8yegf0lQkCopcNmpeNthN+apAo1cMmtbgZ9gO2MGBZcwXg1TCwnjQ9aHlqOaKbDtbHLMmO47pUt7sXFPI52ovzsypqwdqchVKoYDO5vLxf9yrRR7jXYmdJIiaP6zqJdKijHNnaFdYYCjHDnCuBHur5QPmGEcnX9TWyazE+BTl2SPqRY87sKMKvERDctdDGY9+0tu6rXA8avj6lmj8HOZ7JI9ckACckLOyAW5JE3CyRN5Ji/k1XvzPrxP7+untOQVPTtkCqXFb0LMsbg=</latexit><latexit sha1_base64="aX4NUvA8zSo5tYo+d4Fmsxn78aU=">AAACTHicbVDLSgMxFM3U97vVpZtgEVxInSmCBTeCG5cKVoVOKZn0tg1NMmNyRyxD936NW/0K9/6HOxHM1FnY6oFcDue+ck+USGHR99+90tz8wuLS8srq2vrG5la5sn1j49RwaPJYxuYuYhak0NBEgRLuEgNMRRJuo+F5nr99AGNFrK9xlEBbsb4WPcEZOqlT3gutUDQ8paG9N5iFiaDhIVV5OMoDrY875apf8yegf0lQkCopcNmpeNthN+apAo1cMmtbgZ9gO2MGBZcwXg1TCwnjQ9aHlqOaKbDtbHLMmO47pUt7sXFPI52ovzsypqwdqchVKoYDO5vLxf9yrRR7jXYmdJIiaP6zqJdKijHNnaFdYYCjHDnCuBHur5QPmGEcnX9TWyazE+BTl2SPqRY87sKMKvERDctdDGY9+0tu6rXA8avj6lmj8HOZ7JI9ckACckLOyAW5JE3CyRN5Ji/k1XvzPrxP7+untOQVPTtkCqXFb0LMsbg=</latexit><latexit sha1_base64="aX4NUvA8zSo5tYo+d4Fmsxn78aU=">AAACTHicbVDLSgMxFM3U97vVpZtgEVxInSmCBTeCG5cKVoVOKZn0tg1NMmNyRyxD936NW/0K9/6HOxHM1FnY6oFcDue+ck+USGHR99+90tz8wuLS8srq2vrG5la5sn1j49RwaPJYxuYuYhak0NBEgRLuEgNMRRJuo+F5nr99AGNFrK9xlEBbsb4WPcEZOqlT3gutUDQ8paG9N5iFiaDhIVV5OMoDrY875apf8yegf0lQkCopcNmpeNthN+apAo1cMmtbgZ9gO2MGBZcwXg1TCwnjQ9aHlqOaKbDtbHLMmO47pUt7sXFPI52ovzsypqwdqchVKoYDO5vLxf9yrRR7jXYmdJIiaP6zqJdKijHNnaFdYYCjHDnCuBHur5QPmGEcnX9TWyazE+BTl2SPqRY87sKMKvERDctdDGY9+0tu6rXA8avj6lmj8HOZ7JI9ckACckLOyAW5JE3CyRN5Ji/k1XvzPrxP7+untOQVPTtkCqXFb0LMsbg=</latexit><latexit sha1_base64="aX4NUvA8zSo5tYo+d4Fmsxn78aU=">AAACTHicbVDLSgMxFM3U97vVpZtgEVxInSmCBTeCG5cKVoVOKZn0tg1NMmNyRyxD936NW/0K9/6HOxHM1FnY6oFcDue+ck+USGHR99+90tz8wuLS8srq2vrG5la5sn1j49RwaPJYxuYuYhak0NBEgRLuEgNMRRJuo+F5nr99AGNFrK9xlEBbsb4WPcEZOqlT3gutUDQ8paG9N5iFiaDhIVV5OMoDrY875apf8yegf0lQkCopcNmpeNthN+apAo1cMmtbgZ9gO2MGBZcwXg1TCwnjQ9aHlqOaKbDtbHLMmO47pUt7sXFPI52ovzsypqwdqchVKoYDO5vLxf9yrRR7jXYmdJIiaP6zqJdKijHNnaFdYYCjHDnCuBHur5QPmGEcnX9TWyazE+BTl2SPqRY87sKMKvERDctdDGY9+0tu6rXA8avj6lmj8HOZ7JI9ckACckLOyAW5JE3CyRN5Ji/k1XvzPrxP7+untOQVPTtkCqXFb0LMsbg=</latexit>

23.9 when m = 365

26

Uniform hashing assumption

Uniform hashing assumption. Each key is equally likely to hash to an

integer between 0 and m - 1.

 
Bins and balls. Throw balls uniformly at random into m bins.

 
 
 
 
 
Good news. [load balancing]

・When n >> m, expect most bins to have approximately n / m balls.

・When n = m, expect most loaded bin has ~ ln m / ln ln m balls.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m = 16 bins, n = 11 balls

Hash value frequencies for words in Tale of Two Cities (M = 97)hash value frequencies for words in Tale of Two Cities (m = 97)

n / m

Binomial(n, 1 / m)

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ hash functions

‣ separate chaining

‣ linear probing

‣ context

3.4 HASH TABLES

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

28

Collisions

Collision. Two distinct keys hashing to same index.  

・Birthday problem ⇒ can’t avoid collisions. 

・Load balancing ⇒ no index gets too many collisions.

 ⇒ ok to scan through all colliding keys.

 unless you have a ridiculous
(quadratic) amount of memory

hash("CA") = 3

0

1

2

3

4

5

…

99

hash("NJ") = 3
"NJ"

"PA"

L 11

Use an array of m linked lists. [H. P. Luhn, IBM 1953]

・Hash: map key to integer i between 0 and m - 1.

・Insert: put at front of i th chain (if not already in chain).

F C B5 12

29

Separate-chaining symbol table

I D

K J E A

H G

0

1

2

3

st[]

8

10

7

3

9

6

4 0

put(L, 11)
hash(L) = 3

separate-chaining hash table (m = 4)

Use an array of m linked lists. [H. P. Luhn, IBM 1953]

・Hash: map key to integer i between 0 and m - 1.

・Insert: put at front of i th chain (if not already in chain).

・Search: sequential search in i th chain.

30

Separate-chaining symbol table

I D

K J E A

H G

L F C

0

1

2

3

st[]

8

10

7

11

3

9

6

4

2

0

get(E)
hash(E) = 1

separate-chaining hash table (m = 4)

5 B 1

public class SeparateChainingHashST<Key, Value> 
{ 
 private int m = 128; // number of chains 
 private Node[] st = new Node[m]; // array of chains 
 
 private static class Node 
 { 
 private Object key; 
 private Object val; 
 private Node next; 
 ...  
 } 

 private int hash(Key key) 
 { return (key.hashCode() & 0x7fffffff) % m; } 
 
 
 
 
 
 
 
 
}

public Value get(Key key) {
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next)
 if (key.equals(x.key)) return (Value) x.val;
 return null;
}

Separate-chaining symbol table: Java implementation

31

no generic array creation
(declare key and value of type Object)

array resizing
code omitted

Separate-chaining symbol table: Java implementation

32

public class SeparateChainingHashST<Key, Value> 
{ 
 private int m = 128; // number of chains 
 private Node[] st = new Node[m]; // array of chains

 private static class Node
 {
 private Object key;
 private Object val;
 private Node next;
 ...
 }

 private int hash(Key key) 
 { return (key.hashCode() & 0x7fffffff) % m; }
 
 
 
 
 
 
 
 

}

public void put(Key key, Value val)
{
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next)
 if (key.equals(x.key)) { x.val = val; return; }
 st[i] = new Node(key, val, st[i]);
}

Recall load balancing. Under uniform hashing assumption, length of each

chain is approximately n / m.

 
 
 
 
 
 
 
 
 
Consequence. Number of probes for search/insert is proportional to n / m.

・m too small ⇒ chains too long.

・m too large ⇒ too many empty chains.

・Typical choice: m ~ ¼ n ⇒ constant time per operation.

33

Analysis of separate chaining

m times faster than 
sequential search

calls to either
equals() or hashCode()

Hash value frequencies for words in Tale of Two Cities (M = 97)hash value frequencies for words in Tale of Two Cities (m = 97)

Goal. Average length of list n / m = constant.

・Double length m of array when n / m ≥ 8.

・Halve length m of array when n / m ≤ 2.

・Note: need to rehash all keys when resizing.

34

Resizing in a separate-chaining hash table

A B C D E F G H I J

K L M N O P

0

1

K I

P N L E
0

1

2

3

before resizing (n/m = 8)

after resizing (n/m = 4)

J F C B

O M H G D

A

x.hashCode() does not change;
 but hash(x) typically does

st[]

st[]

Q. How to delete a key (and its associated value)?

A. Easy: need to consider only chain containing key.

35

Deletion in a separate-chaining hash table

before deleting C

K I

P N L0

1

2

3
J F C B

O M

st[]
K I

P N L

J F B

O M

after deleting C

0

1

2

3

st[]

Symbol table implementations: summary

36

† under uniform hashing assumption

implementation

guarantee average case
ordered

ops?
key

interface
search insert delete search insert delete

sequential search 
(unordered list) n n n n n n equals()

binary search 
(ordered array) log n n n log n n n ✔ compareTo()

BST n n n log n log n √ n ✔ compareTo()

red–black BST log n log n log n log n log n log n ✔ compareTo()

separate chaining n n n 1 † 1 † 1 †
equals()

hashCode()

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ hash functions

‣ separate chaining

‣ linear probing

‣ context

3.4 HASH TABLES

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Open addressing. [Amdahh–Boehme–Rocherster–Samuel, IBM 1953]

・Maintain keys and values in two parallel arrays.

・When a new key collides, find next empty slot and put it there.

38

Collision resolution: open addressing

linear-probing hash table (m = 16, n =10)

0 1 2 3 4 5 6 7 8 9

keys[]

10 11 12 13 14 15

EA C H R XMP L

vals[] 139 5 6 4 81011 12

put(K, 14)
hash(K) = 7

K

14

Hash. Map key to integer i between 0 and m − 1.

Insert. Put at table index i if free; if not try i + 1, i + 2, etc.

Search. Search table index i; if occupied but no match, try i + 1, i + 2, etc.

Note. Array length m must be greater than number of key–value pairs n.

39

Linear-probing hash table summary

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m = 16

S EA C H R XMP Lkeys[]

public class LinearProbingHashST<Key, Value>  
{ 
 private int m = 32768; 
 private Value[] vals = (Value[]) new Object[m]; 
 private Key[] keys = (Key[]) new Object[m]; 

 private int hash(Key key) 
 { return (key.hashCode() & 0x7fffffff) % m; } 

 private void put(Key key, Value val) { /* next slide */ } 
 
 
 
 
 
 
 

 
}

public Value get(Key key)
{
 for (int i = hash(key); keys[i] != null; i = (i+1) % m)
 if (key.equals(keys[i]))
 return vals[i];
 return null;
}

Linear-probing symbol table: Java implementation

40

array resizing
code omitted

public class LinearProbingHashST<Key, Value>
{
 private int m = 32768;
 private Value[] vals = (Value[]) new Object[m];
 private Key[] keys = (Key[]) new Object[m];

 private int hash(Key key) 
 { return (key.hashCode() & 0x7fffffff) % m; }

 private Value get(Key key) { /* prev slide */ }
 
 
 
 
 
 
 
 
 

}

public void put(Key key, Value val)
{
 int i;
 for (i = hash(key); keys[i] != null; i = (i+1) % m)
 if (keys[i].equals(key))
 break;
 keys[i] = key;
 vals[i] = val;
}

Linear-probing symbol table: Java implementation

41

Under the uniform hashing assumption, where is the next key most
likely to be added in this linear-probing hash table (no resizing)?  
 
 
 
 

A. Index 7.

B. Index 14.

C. Either index 4 or 14.

D. All open indices are equally likely.

42

Hash tables: quiz 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

H I M N D A B E F G J K C L

Cluster. A contiguous block of items.

Observation. New keys likely to hash into middle of big clusters.

43

Clustering

Proposition. Under uniform hashing assumption, the average # of probes in

a linear-probing hash table of size m that contains n = α m keys is at most  
 
 

Pf. [beyond course scope]

 
 
 
 
 
 
Parameters.

・m too large ⇒ too many empty array entries.

・m too small ⇒ search time blows up.

・Typical choice: α = n / m ~ ½.
44

Analysis of linear probing

⇥ 1
2

�
1 +

1
1� �

⇥

search hit

⇥ 1
2

�
1 +

1
(1� �)2

⇥

search miss / insert

probes for search hit is about 3/2
probes for search miss is about 5/2

Goal. Average length of list n / m ≤ ½.

・Double length of array m when n / m ≥ ½.

・Halve length of array m when n / m ≤ ⅛.

・Need to rehash all keys when resizing.

45

Resizing in a linear-probing hash table

keys[]

0 1 2 3 4 5 6 7

E S R A

1 0 3 2vals[]

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A S E R

2 0 1 3vals[]

after resizing

before resizing

How to delete a key–value pair from a linear-probing hash table? 
 
 
 
 
 
 

A. Search for key; remove key (and value) from arrays.  

B. Search for key; remove key (and value) from arrays.  
Shift all keys in cluster after deleted key over 1 position to left. 

C. Both A and B.

D. Neither A nor B.

46

Hash tables: quiz 5

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P M A C S H L E R X

10 9 8 4 0 5 11 12 3 7
vals[]

fails if hash(H) = 4, 5, or 6

fails if hash(H) = 7

before deleting S
cluster after deleted key

ST implementations: summary

47
† under uniform hashing assumption

implementation

guarantee average case
ordered

ops?
key

interface
search insert delete search insert delete

sequential search 
(unordered list) n n n n n n equals()

binary search 
(ordered array) log n n n log n n n ✔ compareTo()

BST n n n log n log n √ n ✔ compareTo()

red–black BST log n log n log n log n log n log n ✔ compareTo()

separate chaining n n n 1 † 1 † 1 †
equals()

hashCode()

linear probing n n n 1 † 1 † 1 †
equals()

hashCode()

3-SUM (REVISITED)

3-SUM. Given n distinct integers, find three such that a + b + c = 0.

Goal. n 2 expected time case, n extra space.

 
 
Hashing-based solution to 3-SUM.

・Insert each integer into a hash table.

・For each pair of integers a and b, search hash table for c = −(a + b). 
(assuming c ≠ a and c ≠ b)

48

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ hash functions

‣ separate chaining

‣ linear probing

‣ context

3.4 HASH TABLES

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

50

War story: algorithmic complexity attacks

Q. Is the uniform hashing assumption important in practice?

A. Obvious situations: aircraft control, nuclear reactor, pacemaker, HFT, …

A. Surprising situations: denial-of-service attacks.

 
 
 
 
 
 
 
 
 
Real-world exploits. [Crosby–Wallach 2003]

・Linux 2.4.20 kernel: save files with carefully chosen names.

・Bro server: send carefully chosen packets to DOS the server, 
using less bandwidth than a dial-up modem.

malicious adversary learns your hash function 
(e.g., by reading Java API) and causes a big pile-up 

in single slot that grinds performance to a halt

0

1

2

3

st[]

4

5

6

7

51

Diversion: one-way hash functions

One-way hash function. “Hard” to find a key that will hash to a desired

value (or two keys that hash to same value).

 
Ex. MD4, MD5, SHA-0, SHA-1, SHA-256, SHA-512, WHIRLPOOL, ….

 
 
 
 
 
 
 
 
Applications. Digital signatures, message digests, password verification,

cryptocurrencies, blockchain, Git commit identifiers, …. 

Caveat. Too expensive for use in ST implementations.

known to be insecure

String password = "OPEN_SESAME";
MessageDigest sha256 = MessageDigest.getInstance("SHA-256");
byte[] bytes = sha256.digest(password.getBytes());

32 bytes (256 bits) for SHA-256

Separate chaining vs. linear probing

Separate chaining.

・Performance degrades gracefully.

・Clustering less sensitive to poorly-designed hash function.

 
Linear probing.

・Less wasted space.

・Better cache performance.

・More probes because of clustering.

52

Hashing with separate chaining for standard indexing client

st[]
0

1

2

3

4

S 0X 7

E 12A 8

P 10L 11

R 3C 4H 5M 9

S 2 0

E 0 1

A 0 2

R 4 3

C 4 4

H 4 5

E 0 6

X 2 7

A 0 8

M 4 9

P 3 10

L 3 11

E 0 12

null

key hash value

keys[]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P M A C S H L E R X

10 9 8 4 0 5 11 12 3 7vals[]

Hashing: variations on the theme

Many improved versions have been studied.

 
Two-probe hashing. [separate-chaining variant]

・Hash to two positions, insert key in shorter of the two chains.

・Reduces expected length of the longest chain to ~ lg ln n.

Double hashing. [linear-probing variant]

・Use linear probing, but skip a variable amount, not just +1 each time.

・Effectively eliminates clustering.

・Can allow table to become nearly full.

・More difficult to implement delete.

Cuckoo hashing. [linear-probing variant]

・Hash key to two positions; insert key into either position; if occupied,

reinsert displaced key into its alternative position (and recur).

・Constant worst-case time for search.
53

Hash tables vs. balanced search trees

Hash tables.

・Simpler to code.

・No effective alternative for unordered keys.

・Faster for simple keys (a few arithmetic ops versus log n compares).

Balanced search trees.

・Stronger performance guarantee.

・Support for ordered ST operations.

・Easier to implement compareTo() than hashCode().

Java system includes both.

・Balanced search trees: java.util.TreeMap, java.util.TreeSet.

・Hash tables: java.util.HashMap, java.util.IdentityHashMap.

54

linear probingseparate chaining
(if chain gets too long, 

use red–black BST for chain)

red–black BST

