A 1 g() I 1 [h Ims ROBERT SEDGEWICK | KEVIN WAYNE

3.3 BALANCED SEARCH TREES

» 2-3 search trees

» red-black BSTs

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Symbol table review

guarantee average case
ordered key

implementation :
ops? interface
search delete delete

sequential search
(unordered list)

n n n n n n equals()

binary search
(ordered array)

BST @ @ n log n log n Vn v compareTo()

goal log n log n log n log n v compareTo()

log n n n log n n n v compareTo()

Challenge. Guarantee performance. T far (meliing o cedie:
/ introduced to the world in this course!

This lecture. 2-3 trees and left-leaning red-black BSTs.
™~

co-invented by Bob Sedgewick

3.3 BALANCED SEARCH TREES

» 2-3 search trees

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

2-3 tree

Allow 1 or 2 keys per node.
« 2-node: one key, two children.
« 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

@ how to maintain?

3-node 2-node
smaller than E E J e
\ larger than J

OO CING)
AN

between E and J null link

2-3 tree demo

Search.

« Compare search key against key(s) in node.
« Find interval containing search key. @

- Follow associated link (recursively).

search for H

O
E) (R)

OO

2-3 tree: Insertion

Insertion into a 2-node at bottom.
« Add new key to 2-node to create a 3-node.

insert G

2-3 tree: Insertion

Insertion into a 3-node at bottom.

« Add new key to 3-node to create temporary 4-node.
« Move middle key in 4-node into parent.
« Repeat up the tree, as necessary.

 If you reach the root and it’s a 4-node, split it into three 2-nodes.

insert Z

2-3 tree construction demo

insert S

2-3 tree construction demo

2-3 tree

Balanced search trees: quiz 1

What is the maximum height of a 2-3 tree with n keys?

A. ~log; n
B. ~log, n
C. ~2log,n
D.

~nNn

10

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

« Worst case: log, n. [all 2-nodes]
0.631 log, n. [all 3-nodes]
« Between 12 and 20 for a million nodes.

- Best case: logsn

U

« Between 18 and 30 for a billion nodes.

Bottom line. Guaranteed logarithmic performance for search and insert.

11

ST implementations: summary

guarantee average case
ordered key

implementation :
ops? interface
delete delete

sequential search

equals
(unordered list) " " n 2 n n q O
binary search
(order);d array) log n n n log n n n v compareTo()
BST n n n log n log n Vn v compareTo()

2-3 tree log n log n log n log n v compareTo()

but hidden constant c is large
(depends upon implementation)

12

2-3 tree: implementation?

Direct implementation is complicated, because:

Maintaining multiple node types is cumbersome.
« Need multiple compares to move down tree.

« Need to move back up the tree to split 4-nodes.
« Large number of cases for splitting.

fantasy code

public void put(Key key, Value val)
{
Node x = root;
while (x.getTheCorrectChild(key) != null)
{
x = x.getTheCorrectChildKey();
if (x.1s4Node()) x.split(Q);
}
if (x.1s2Node()) x.make3Node(key, val);
else if (x.is3Node()) x.maked4Node(key, val);

Bottom line. Could do it, but there’s a better way.

13

3.3 BALANCED SEARCH TREES

» red-black BSTs

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

How to implement 2-3 trees with binary trees?

Challenge. How to represent a 3 node?

Approach 1. Regular BST.
« No way to tell a 3-node from two 2-nodes.

« Can’t (uniquely) map from BST back to 2-3 tree.

Approach 2. Regular BST with red “glue” nodes.
« Wastes space for extra node.
« Messy code.

Approach 3. Regular BST with red “glue” links.
« Widely used in practice.
« Arbitrary restriction: red links lean left.

&

15

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2-3 tree as a BST.
2. Use “internal” left-leaning links as “glue” for 3-nodes.

3-node @ “ larger key is root

less between greater
than a aandb than b greater
than b

less between
than a aandb

black links connect

red links “glue 2-nodes and 3-nodes

nodes within a 3-node

corresponding red-black BST

16

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 trees and LLRB trees.

red—black tree

2-3 tree

17

An equivalent definition of LLRB trees (without reference to 2-3 trees)

symmetric order

/
A BST such that:

« No node has two red links connected to it.
« Red links lean left.
« Every path from root to null link has the same number of black links.

AN

“perfect black balance”

<«—— color invariants

red—black tree

18

Balanced search trees: quiz 2

Which LLRB tree corresponds to the following 2-3 tree?

EJ

DEEGRE

C. Both A and B.

D. Neither A nor B.

19

Search implementation for red-black BSTs

Observation. Search is the same as for BST (ignore color).

but runs faster

(because of better balance)

public Value get(Key key)

{
Node x = root;
while (x != null)
{
int cmp = key.compareTo(x.key);
if (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else return x.val;
}
return null;
¥

Remark. Many other ops (floor, iteration, rank, selection) are also identical.

20

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) =
can encode color of links in nodes.

private static final boolean RED = true;
private static final boolean BLACK = false;
: h
private class Node h.left.color 4 h.right.color
{ ks RED ™ (E _ is BLACK
Key key; G o
Value val; Q @ @

Node Teft, right;
boolean color;

}

private boolean isRed(Node x)

{

if (x == null) return false;
return x.color == RED; \\

null links are black

21

Review: the road to LLRB trees

2-3 trees
(balanced but awkward to implement)

BSTs
(can get imbalanced)

(A=) (H) (L) (P} (S)(X)

3-nodes “glued” together with red links

how we draw LLRB trees how we implement LLRB trees
(color in links) (color in nodes)

22

Insertion into a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees.

During internal operations, maintain:
« Symmetric order.
« Perfect black balance.
« [but not necessarily color invariants]

Example violations of color invariants:

right-leaning two red children left-left red left-right red
red link (a temporary 4-node) (a temporary 4-node) (a temporary 4-node)

To restore color invariants: perform rotations and color flips.

23

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

J N private Node rotatelLeft(Node h)
{
h assert i1sRed(h.right);
Node x = h.right;
X h.right = x.left;
less x.left = h;
than E x.color = h.color;
h.color = RED;
between greater return X;
Eand S than S }

Invariants. Maintains symmetric order and perfect black balance.

24

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

rotate E left

(after) private Node rotateLeft(Node h)
{
X assert i1sRed(h.right);
Node x = h.right;
h h.right = x.left;
greater X.left = h;
than S x.color = h.color;
h.color = RED;
less between return Xx;
than E Eand S ¥

Invariants. Maintains symmetric order and perfect black balance.

25

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

{(before) private Node rotateRight(Node h)
{
1 assert isRed(h.left);
Node x = h.left;
X h.left = x.right;
greater X.right = h;
than S x.color = h.color;
h.color = RED;
less between return Xx;
than E Eand S ¥

Invariants. Maintains symmetric order and perfect black balance.

26

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

rotate S right

I private Node rotateRight(Node h)
{
X assert isRed(h.left);
Node x = h.left;
h h.left = x.right;
less X.I’"ight = h;
than E x.color = h.color;
h.color = RED;
between greater return X;
Eand S than S }

Invariants. Maintains symmetric order and perfect black balance.

27

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(before)

private void flipColors(Node

{
assert !isRed(h);

assert i1sRed(h.left);
assert 1sRedCh.right);
h.color = RED;

h.left.color = BLACK;
h.right.color = BLACK;

less between between greater }
than A A and E EandS than S

Invariants. Maintains symmetric order and perfect black balance.

h)

28

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.

flip colors
(after)

private void flipColors(Node

{
assert !isRed(h);

assert i1sRed(h.left);
assert 1sRedCh.right);
h.color = RED;

h.left.color = BLACK;
h.right.color = BLACK;

less between between greater }
than A A and E EandS than S

Invariants. Maintains symmetric order and perfect black balance.

h)

29

Insertion into a LLRB tree

« Do standard BST insert. «<— to preserve symmetric order
« Color new link red. <«— to preserve perfect black balance
« Repeat up the tree until color invariants restored:

— two left red links in a row? = rotate right

— left and right links both red? = color flip

— right link only red? = rotate left

inserting H two lefts in a row

G S0 rotalte right
add new
node here
right link red
so rotate left
both children red l

so flip colors

:

Insertion into a LLRB tree

« Do standard BST insert.

« Color new link red.
« Repeat up the tree until color invariants restored:

— two left red links in a row? = rotate right
— left and right links both red? = color flip

— right link only red? = rotate left
inserting P
(R)
@G (M) 2
Q m X @ \ both children
add new Q .redso
node here flip colors

two lefts in a row
right link red so rotate right \
so rotate left

both children red
so flip colors

both children red
so flip colors

31

Red-black BST construction demo

insert SEARCHXMPL

32

Insertion into a LLRB tree: Java implementation

« Do standard BST insert and color new link red.

« Repeat up the tree until color invariants restored:
— right link only red? = rotate left
— two left red links in a row? = rotate right
— left and right links both red? = color flip

private Node put(Node h, Key key, Value val)
{

insert at bottom

if (h == null) return new Node(key, val, RED); (and color it red)

int cmp = key.compareTo(h.key);

if (cmp < 0) h.left = put(h.left, key, val);

else if (cmp > 0) h.right = put(Ch.right, key, val);

else h.val = val;

if (isRed(h.right) && !isRed(h.left)) h = rotatelLeft(h);

if (isRed(h.left) && isRed(h.left.Teft)) h = rotateRight(h); <
if (isRed(h.left) && isRed(h.right)) flipColors(h);

return h; T

} only a few extra lines of code provides near-perfect balance

restore color
invariants

33

255 insertions in ascending order

Insertion into a LLRB tree: visualization

255 insertions in descending order

35

Insertion into a LLRB tree: visualization

255 insertions in random order

36

Balanced search trees: quiz 4

What is the maximum height of a LLRB tree with n keys?

A. ~log, n

B. ~2logsn =1.262log,n
C. ~2log,n
D.

~nNn

37

Balance in LLRB trees

Proposition. Height of LLRB tree is < 2 log, n.
Pf.
« Black height = height of corresponding 2-3 tree < log, n.
* Never two red links in-a-row = height < 1 + 2 x black height. =

worst-case height for LLRB tree
[n = 2" =2, black height =5, height =11 =2 log,(n +2) — 3) |

38

ST implementations: summary

guarantee average case
ordered key

implementation :
ops? interface
search delete search delete

sequential search

(unordered list) " " " " " " FESL
(:::Z:Z;Zi:;t) log n n n log n n n v compareTo()
BST n n n log n log n Vn v compareTo()
2-3 tree log n log n log n log n log n log n v compareTo()

red-black BST log n log n log n log n v compareTo()

hidden constant c is small
(at most 2 log, n compares) 39

Why named red-black BSTs?

Xerox PARC innovations. [1970s]
« Alto.
- GUL.
« Ethernet. XEROX.
- Smalltalk.

[- Laser printing.) ‘,
« Bitmapped display. Xerox Alto
« WYSIWYG text editor.

A DICHROMATIC FRAMEWORK FOR BALANCED TREES

Lco J. Guibas Robert Sedgewick*

Xerox Palo Alto Research Center, Program in Computer Science
Palo Alto, California, and and Brown University
Carnegie-Mellon University Providence, R. [,

the way down towards a lcaf. As we will sce, this has a number of

ABSTRACT significant advantages over the older methods. We shall examine a
number of variations on a common theme and exhibit full
Iu this paper we present a wuniform framework for the implementation implementations which are notable for their brevity. One

and study of balanced tree algorithms. We show how to imbed in this implementation is cxamined carcfully, and some propertics about its

Balanced trees in the wild

Red-black BSTs are widely used as system symbol tables.
e Java: java.util.TreeMap, java.util.TreeSet.
« C++ STL: map, multimap, multiset.
« Linux kernel: CFQ I/O scheduler, 1inux/rbtree.h.

Other balanced BSTs. AVL trees, splay trees, randomized BSTs,

B-trees (and cousins) are widely used for file systems and databases.

« Windows: NTFS.

« Mac: HFS, HFS+.

« Linux: ReiserFS, XFS, Ext3FS, JFS, BTRFS.

« Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

ﬂ . ORACLE
Mac bff”st DATABASE

41

War story 1: red-black BSTs

Telephone company contracted with database provider to build real-time
database to store customer information.

Database implementation.
« Red-black BST.

« Exceeding height limit of 80 triggered error-recovery process.

N

should allow for <24 keys

Extended telephone service outage.
« Main cause = height bound exceeded!

« Telephone company sues database provider.
« Legal testimony:

“ If implemented properly, the height of a red—black BST

I

with n keys is at most 2 log, n.” — expert witness

42

War story 2: red-black BSTs

N

Celestine Omin &
7 ' Follow v
@cyberomin

i’

| was just asked to balance a Binary Search
Tree by JFK's airport immigration. Welcome
to America.

8:26 AM - 26 Feb 2017 fromm Manhattan, NY

8,025 Retweets 7,087Lkes ¥H 2B QE B & QB

~ Celestine Omin & @cyberomin - 26 Feb 2017 v

| was too tired to even think of a BST solution. | have e been travelling for 23hrs.
But | was also asked about 10 CS questions.

Q 8 11 164 Q) 244

» Celestine Omin & @cyberomin - 26 Feb 2017 v

sad thing is, if | didn't give the Wikipedia definition for these questions, it was
considered a wrong answer.

QO 19 11 324 ¢ 703

Simon Sharwood @ssharwood - 26 Feb 2017 v
Replying to @cyberomin

seriously? am reporter for @theregister and would love to know more about your
experience

QO 2 1 22 O 17

https:/ /twitter.com/cyberomin/status/835888786462625792

43

https://twitter.com/cyberomin/status/835888786462625792

War story 3: red-black BSTs

\ B0 /l/

vy
THEY WILL FIND YoU.,

Common sense. Sixth sense.

Together they're the
FBI's newest team.

44

