A 1 g() I 1 [h Ims ROBERT SEDGEWICK | KEVIN WAYNE

2.4 PRIORITY QUEUES

» APl and elementary implementations
» binary heaps
» heapsort

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

2.4 PRIORITY QUEUES

» APl and elementary implementations

Algorithms

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Collections

A collection is a data type that stores a group of items.

stack PUSH, Pop linked list, resizing array
queue ENQUEUE, DEQUEUE linked list, resizing array
priority queue INSERT, DELETE-MAX binary heap
symbol table PuT, GET, DELETE binary search tree, hash table
set ADD, CONTAINS, DELETE binary search tree, hash table

“ Show me your code and conceal your data structures, and I shall
continue to be mystified. Show me your data structures, and I won'’t

usually need your code; it’ll be obvious.” — Fred Brooks

Priority queue

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.
Generalizes: stack, queue, randomized queue.

triage in an emergency room
(priority = urgency of wound/illness)

operation argument

return
value

insert
insert
insert
remove max
insert
insert
insert
remove max
insert
insert
insert
remove max

>
Q
E

Priority queue API

Requirement. Must insert keys of same (generic) type; moreover,

keys must be Comparable.
“bounded type parameter”

/

public class MaxPQ<Key extends Comparable<Key>>

MaxPQQ() create an empty priority queue

void insert(Key v) insert a key into the priority queue

Key delMax() return and remove a largest key

boolean 1isEmpty() is the priority queue empty?

Note. Duplicate keys allowed; deTMax() picks any maximum key.
Warmup client. Reverse sort sequence of integers from standard input.

Priority queue: applications

C « Event-driven simulation. ' customers in a line, colliding particles])
- Discrete optimization. | bin packing, scheduling]
C « Artificial intelligence. | A* search])
« Computer networks. ' web cache |
« Data compression. ' Huffman codes]
« Operating systems. ' load balancing, interrupt handling]
C « Graph searching. Dijkstra’s algorithm, Prim’s algorithm])
« Number theory. ' sum of powers]
« Spam filtering. Bayesian spam filter]
« Statistics. ' online median in data stream |

]
EEpi

° L]
s. L]

priority = length of priority = “distance”

best known path to goal board priority = event time

Priority queue: elementary implementation

Unordered list. Store keys in a linked list.

Ordered array. Store keys in an array in ascending order.

operation argument returnvalue size contents (unordered) contents (ordered)

insert P 1 P P

insert Q 2 P Q P Q

insert E 3 P Q E E P Q

remove max Q 2 P E E P

insert X 3 P E X E P X

insert A 4 P E X A A E P X

insert M 5 P E X A M A E M P X
remove max X 4 P E M A A E M P

insert P 5 P E M A P A E M P P
insert L 6 P E M A P L A E L M P P
insert E / P E M A P L E A E E L M P
remove max P) E E M A P L A E E L M P

Priority queues: quiz 1 g

In the worst case, what are the running times for INSERT and DELETE-MAX,
respectively, for a priority queue implemented with an ordered array?

N\

ignore array resizing
A. landn

B. 1andlogn

C. lognand]l

D. nand1 A E E L M P X

Priority queue: implementations cost summary

Challenge. Implement all operations efficiently.

implementation INSERT DELETE-MAX -

unordered list

ordered array n 1 1

order of growth of running time for priority queue with n items

Solution. “Somewhat-ordered” array.

2.4 PRIORITY QUEUES

» binary heaps
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Complete binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Every level (except possibly the last) is completely filled;
the last level is filled from left to right.

complete binary tree with n = 16 nodes (height = 4)

Property. Height of complete binary tree with n nodes is |Ig n].
Pf. Height increases only when n is a power of 2.

11

A complete binary tree in nature

12

Binary heap: representation

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered tree.
« Keys in nodes.
« Parent’s key no smaller than
children’s keys. |
afi]
Array representation.
« Indices start at 1.
- Take nodes in level order.
« Don’t need explicit links! \\
(T

I H G

Heap representations

13

Priority queues: quiz 2 o

Consider the key at index k in a binary heap. What is index of its parent?

A. k/2 -1
B. k/2
C. k/2 +1
D. 2%k

14

Binary heap: properties

Proposition. Largest key is at index 1, which is root of binary tree.

Proposition. Can use array indices to move through tree.
« Parent of key at index k is at index k/2.
« Children of key at index k are at indices 2*k and 2*k + 1.

15

Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered

16

Binary heap: promotion

Scenario. A key becomes larger than its parent’s key.

To eliminate the violation:
« Exchange key in child with key in parent.
« Repeat until heap order restored.

private void swim(int k)

{
while (k > 1 && less(k/2, k))
{
exch(k, k/2);
k = k/2;
} po

parent of node at k is at k/2
}

Peter principle. Node promoted to level of incompetence.

violates heap order

@ (larger key than parent)

17

Binary heap: insertion

Insert. Add node at end in bottom level; then, swim it up.
Cost. At most 1 +1gn compares.

insert

public void insert(Key x)
{

pgl++n] = x;

swim(n);

- add key to heap

violates heap order

18

Binary heap: demotion

Scenario. A key becomes smaller than one (or both) of its children’s key.

To eliminate the violation: why not smaller child?
« Exchange key in parent with key in larger child.
« Repeat until heap order restored.

private void sink(int k) (ﬁ%gﬁﬁggﬁn o
{
while (2*k <= n) children of node at k 2@ (R
{ are at 2*k and 2*%k+1 5 @ e
int § = 2%k; /S S @?@
1f (3 < n && less(3, j+1)) J++; o
1f (!less(k, j)) break; 2 ®)
exch(k, 7);
€ JC 2 ri 0BNORO
= - 10
} & ©
} Top-down reheapify (sink)

Power struggle. Better subordinate promoted.

19

Binary heap:

delete the maximum

Delete max. Exchange root with node at end; then, sink it down.

Cost. At most 21gn compares.

public Key delMax()

{
Key max = pqll];
exch(l, n--);
sink(1);
pg[n+1] = null; «—— prevent loitering
return max;
¥

remove the maximum

(S) (R)
(N (P)
® @O © @V

violates

(S)
(N] (P)
® © © 17

heap order
(A

sink down

20

Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>>

{
private Key[] a;
private int n;

public MaxPQ(int capacity)
{ a = (Key[]) new Comparable[capacity+1];

fixed capacity
(for simplicity)

}

public boolean 1sEmpty()

{ return n = 0; }

public void insert(Key key)
public Key delMax()

<«——— PQops

private void swim(int k) |
private void sink(int k) <—— heap helper functions
private boolean less(int 1, int j)

{ vreturn a[i].compareTo(alj]l) < 0; }
<«——— array helper functions
private void exch(int i, 1int j)

{ Key t = a[i]; a[i] = al[jl; al[j]l = t; }

https://algs4.cs.princeton.edu/24pq/MaxPQ.java.html

Priority queue: implementations cost summary

implementation INSERT DELETE-MAX -

unordered list

ordered array n 1 1

order of growth of running time for priority queue with n items

22

PRIORITY QUEUE WITH DELETE-RANDOM

Goal. Design an efficient data structure to support the following ops:
« INSERT: insert a specified key.
« DELETE-MAX: delete and return a max key.
« SAMPLE: return a random key.
« DELETE-RANDOM: delete and return a random key.

23

DELETE-RANDOM FROM A BINARY HEAP

24

Binary heap: considerations

Underflow and overflow.
« Underflow: throw exception if deleting from empty PQ.
« Overflow: add no-arg constructor and use resizing array.

A\

leads to log n

Tal ~OVi TAri amortized time per op
Minimum-oriented priority queue. (how to make worst case?)

« Replace 1ess() with greater().
« Implement greater().

Other operations.
- Remove an arbitrary item. can implement efficiently with sink() and swim()

. Change the priority of an item. [stay tuned for Prim/Dijkstra]

Immutability of keys.
« Assumption: client does not change keys while they're on the PQ.
« Best practice: use immutable keys.

27

Immutability: implementing in Java

Data type. Set of values and operations on those values.
Immutable data type. Can’t change the data type value once created.

public final class Vector {
private final int n;
private final double[] data;

instance variables private and final
< (neither necessary nor sufficient,
but good programming practice)

public Vector(double[] data) {
this.n = data.length;
this.data = new double[n];
for (Aint i =0; 1 < n; 1++) <
this.data[1] = datal[i];

defensive copy of mutable
instance variables

instance methods don’t
change instance variables

Immutable in Java. String, Integer, Double, Color, File, ...
Mutable in Java. StringBuilder, Stack, URL, arrays, ...

28

Immutability: properties

Data type. Set of values and operations on those values.
Immutable data type. Can’t change the data type value once created.

Advantages.

- Simplifies debugging.
- Simplifies concurrent programming. T
- More secure in presence of hostile code.

- Safe to use as key in priority queue or symbol table.

Disadvantage. Must create new object for each data-type value.

Joshua Bloch ”g& % 2

“ Classes should be immutable unless there’s a very good reason .
Effective Java

Second Edition

to make them mutable.... If a class cannot be made immutable,

you should still limit its mutability as much as possible.”

— Joshua Bloch (Java architect)

29

Binary heap: practical improvements

Do “half exchanges” in sink and swim.
« Reduces number of array accesses.
- Worth doing.

‘ T
() () ()

X

30

Binary heap: practical improvements

Floyd’s “bounce” heuristic.
« Sink key at root all the way to bottom. <«— only 1 compare per node
e« Swim key back UP. <«— some extra compares and exchanges

« Overall, fewer compares; more exchanges.

° Y

() () (N 0

()) () () L
QOO0 0O00 OO0 G

< o

R. W. Floyd
1978 Turing award

31

Binary heap: practical improvements

Multiway heaps.
« Complete d-way tree.
- Parent’s key no smaller than its children’s keys.

Fact. Height of complete d-way tree on n nodes is ~ log, n.

>

(1) (P (W) ()
HHOROOLOOMm OMO

3-way heap

32

Priority queues: quiz 3

In the worst case, how many compares to INSERT and DELETE-MAX in a
d-way heap as function of n and d?

A. ~log,n and ~log,n

B. NlOgdn and Ndl()gdn

C. ~dlog,n and ~log,n

D. ~dlog,n and ~dlog,n

33

Priority queue: implementation cost summary

implementation INSERT DELETE-MAX m

unordered array

ordered array n
binary heap log n
d-ary heap log,n

1
1
1

log n

dlog,n

lognt

log n

1+ amortized

order-of-growth of running time for priority queue with n items

<«—— sweet spot: d=4

<«<—— why impossible?

2.4 PRIORITY QUEUES

» heapsort

Algorithms

RoOBERT SEDGEWICK | KEVIN WAYNE

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Priority queues: quiz 4

What are the properties of this sorting algorithm?

o N ® »

public void sort(String[] a)

{
int n = a.length;
MaxPQ<String> pq = new MaxPQ<String>();
for (Ant 1 = 0; 1 < n; 1++)
pg.insert(ali]);
for (int 1 = n-1; 1 >= 0; 1--)
ali] = pq.delMax();
}

nlog n compares in the worst case.
In-place.
Stable.

All of the above.

36

Heapsort

Basic plan for in-place sort.

« View input array as a complete binary tree.

 Heap construction: build a max-heap with all n keys.

« Sortdown: repeatedly remove the maximum key.

keys in arbitrary order

S O R T E X A MP

L

E

build max heap
(in place)

sorted result
(in place)

A E E L M O P R S T X

37

Heapsort demo

Heap construction. Build max heap using bottom-up method.

AN

for now, assume array entries are indexed 1 to n

array in arbitrary order

38

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

array in sorted order

11

39

Heapsort: heap construction

First pass. Build heap using bottom-up method.
Key property. After sink(a, k, n) completes, tree rooted at k is a heap.

for (int k = n/2; k >= 1; k--)

sink(a, k, n);
sink(3, 11)
(X)
R ®
starting point (arbitrary order)
sink(2, 11)
sink(5, 11) 6
(P’ o
8 W@ ©® ©
sink(4, 11) sink(1, 11)

® ®

result (heap-ordered)

Heapsort: sortdown

Second pass.

exch(l,)
sink(1, ~
of 0

EXCh(l’ 5)@/%
sink(1, 4)
(S

d® @&

« Remove the maximum, one at a time.

« Leave in array, instead of nulling out.

exch(l, 11)
sink(1, 10)

while (n > 1)

h ® ® ® x
exch(a, 1, n--); TG T S (E)
sink(a, 1, n);) & ©
ok B ok 33 ®

h(l, 8 h(l, 2
Skt 7 ® ekt 13 @
(0) (E) §
(W) L ® ®

R

h(l, 7 1
Skt ©) A
(M) °E S E
Q G P 4L SM 60 7P

SR 9S 10_|_ 11X

result (sorted)

Heapsort: Java implementation

public class Heap

{

public static void sort(Comparable[] a)

{
int n = a.length;
for (int k = n/2; k >= 1; k--)
sink(a, k, n);
while (n > 1)
{
exch(a, 1, n);
sink(a, 1, --n);
}
}

private static void sink(Comparable[] a, int k, int n)
{ /* as before */ } ™~ but make static (and pass arguments)

private static boolean less(Comparable[] a, int i, int J)
{ /* as before */ }

private static void exch(Obsect[] a, 1nt 1, 1nt J)
{ /* as before */ }

but convert from 1-based
indexing to 0-base indexing

42

https://algs4.cs.princeton.edu/24pq/Heap.java.html

Heapsort: trace

N Kk
initial values
11 5
11 4
11 3
11 2
11 1
heap-ordered
10 1
9 1
8 1
/ 1
6 1
5 1
4 1
3 1
2 1
1 1

sorted result

ali]
O 1 2 3 4 5 6 7 8 91011
S O R T E X A M P L E
L E E
T M P
X R A
T P L M O
X T S R A
X T S P L R A MO E E
T P S O L M E X
S P R E A T
R P E E A VS
P O E M L R
O M E A L P
M L E A E O
L E E A M
E A E L
E A E
A E
A E E L M O P R S T X

Heapsort trace (array contents just after each sink)

43

Heapsort animation

50 random items

https:/ /www.toptal.com/developers /sorting-algorithms/heap-sort

A

algorithm position
in order
not in order

44

https://www.toptal.com/developers/sorting-algorithms/heap-sort

Heapsort: mathematical analysis

Proposition. Heap construction makes <n exchanges and <2 n compares.

Pf sketch. [assume n = 21 — 1]

max number of exchanges
to sink node

0 0 0 0 0 0 0 0
O O O O O O O C

binary heap of height h = 3 a tricky sum

(see COS 340)

/

oh+l _p 9
n—(h—1)

n

h+ 2h—-1) + 4h—-2) + 8h—3) + ... + 2™(0)

VAN

45

Heapsort: mathematical analysis

Proposition. Heap construction makes <n exchanges and <2 n compares.
Proposition. Heapsort uses <2 nlgn compares and exchanges.

N

algorithm can be improved to ~nlgn
(but no such variant is known to be practical)

Significance. In-place sorting algorithm with nlog n worst-case.
. Mergesort: no, linear extra Space. <«— in-place merge possible, not practical
e Quicksort: no, quadratic time In worst case. «— nlogn worst-case quicksort possible,

not practical

« Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:
« Inner loop longer than quicksort’s.
« Makes poor use of cache.
« Not stable. N\

can be improved using
advanced caching tricks

46

Introsort

Goal. As fast as quicksort in practice; nlog n worst case, in place.

Introsort.
« Run quicksort.
« Cutoff to heapsort if stack depth exceeds 2 1g n.
« Cutoff to insertion sort for n = 16.

Introspective Sorting and Selection Algorithms

David R. Musser*
Computer Science Department
Rensselaer Polytechnic Institute, Troy, NY 12180
musser@cs.rpi.edu

THE I I
Abstract
Quicksort is the preferred in-place sorting algorithm in many contexts, since its average

S I AN DARD computing time on uniformly distributed inputs is ©(N log N) and it is in fact faster than
most other sorting algorithms on most inputs. Its drawback is that its worst-case time

bound is ©(N?). Previous attempts to protect against the worst case by improving the

TE M PLATE way quicksort chooses pivot elements for partitioning have increased the average computing

time too much—one might as well use heapsort, which has a ©(N log N) worst-case time
Ll BRARY bound but is on the average 2 to 5 times slower than quicksort. A similar dilemma exists
with selection algorithms (for finding the i-th largest element) based on partitioning. This
paper describes a simple solution to this dilemma: limit the depth of partitioning, and for
subproblems that exceed the limit switch to another algorithm with a better worst-case
FJ. PLAUGER bound. Using heapsort as the “stopper” yields a sorting algorithm that is just as fast
ALEXANDER A. STEPANOV as quicksort in the average case but also has an ©(N log N) worst case time bound. For
MENG LEF selection, a hybrid of Hoare’s FIND algorithm, which is linear on average but quadratic
in the worst case, and the Blum-Floyd-Pratt-Rivest-Tarjan algorithm is as fast as Hoare’s
algorithm in practice, yet has a linear worst-case time bound. Also discussed are issues
of implementing the new algorithms as generic algorithms and accurately measuring their
performance in the framework of the C++ Standard Template Library.

DAVID R. MUSSER

In the wild. C++ STL, Microsoft .NET Framework.

47

Sorting algorithms: summary

inplace? | stable? “ average m remarks
v

Yon? Yoan? Yan? n exchanges
f I
y v . Y2 Y 2 use .orsma n
or partially ordered
n log n guarantee;
v Yl 1 lg n
v | improves mergesort
" nlgn nign when preexisting order
1 babilisti tee;
v nlg 5 1l m Y 2 nognproa_lls |cgl_Jaranee
fastest in practice
- ok v 51 Y 2 improves quicksort
-way quic n nmn 2 when duplicate keys
“ v 3n 2nlgn 2nlgn nlog_n guarantee;
in-place
v v n nlgn nlgn holy sorting grail

