2.4 **Priority Queues**

- API and elementary implementations
- Binary heaps
- Heapsort
- Event-driven simulation (see videos)

Visit https://algs4.cs.princeton.edu
2.4 Priority Queues

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation (see videos)
A **collection** is a data type that stores a group of items.

<table>
<thead>
<tr>
<th>data type</th>
<th>core operations</th>
<th>data structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>stack</td>
<td>Push, Pop</td>
<td>linked list, resizing array</td>
</tr>
<tr>
<td>queue</td>
<td>Enqueue, Dequeue</td>
<td>linked list, resizing array</td>
</tr>
<tr>
<td>priority queue</td>
<td>Insert, Delete-Max</td>
<td>binary heap</td>
</tr>
<tr>
<td>symbol table</td>
<td>Put, Get, Delete</td>
<td>binary search tree, hash table</td>
</tr>
<tr>
<td>set</td>
<td>Add, Contains, Delete</td>
<td>binary search tree, hash table</td>
</tr>
</tbody>
</table>

“**Show me your code and conceal your data structures, and I shall continue to be mystified. Show me your data structures, and I won’t usually need your code; it’ll be obvious.**” — Fred Brooks
Priority queue

Collections. Insert and delete items. Which item to delete?

Stack. Remove the item most recently added.
Queue. Remove the item least recently added.
Randomized queue. Remove a random item.

Priority queue. Remove the largest (or smallest) item.
Generalizes: stack, queue, randomized queue.

triage in an emergency room
(priority = urgency of wound/illness)
Priority queue API

Requirement. Must insert keys of same (generic) type; moreover, keys must be Comparable.

```
public class MaxPQ<Key extends Comparable<Key>> {
    MaxPQ();
    void insert(Key v);
    Key delMax();
    boolean isEmpty();
    Key max();
    int size();
}
```

- `create an empty priority queue`
- `insert a key into the priority queue`
- `return and remove a largest key`
- `is the priority queue empty?`
- `return a largest key`
- `number of entries in the priority queue`

Note. Duplicate keys allowed; `delMax()` picks any maximum key.

Warmup client. Reverse sort sequence of integers from standard input.
Priority queue: applications

- **Event-driven simulation.** [customers in a line, colliding particles]
- **Discrete optimization.** [bin packing, scheduling]
- **Artificial intelligence.** [A* search]
- **Computer networks.** [web cache]
- **Data compression.** [Huffman codes]
- **Operating systems.** [load balancing, interrupt handling]
- **Graph searching.** [Dijkstra’s algorithm, Prim’s algorithm]
- **Number theory.** [sum of powers]
- **Spam filtering.** [Bayesian spam filter]
- **Statistics.** [online median in data stream]

(priority = length of best known path)

(priority = “distance” to goal board)

(priority = event time)
Priority queue: elementary implementation

Unordered list. Store keys in a linked list.

Ordered array. Store keys in an array in ascending order.

<table>
<thead>
<tr>
<th>operation</th>
<th>argument</th>
<th>return value</th>
<th>size</th>
<th>contents (unordered)</th>
<th>contents (ordered)</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert</td>
<td>P</td>
<td>1</td>
<td>P</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>insert</td>
<td>Q</td>
<td>2</td>
<td>P Q</td>
<td>P Q</td>
<td>P Q</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td>3</td>
<td>P Q E</td>
<td>E P Q</td>
<td>E P Q</td>
</tr>
<tr>
<td>remove max</td>
<td>Q</td>
<td>2</td>
<td>P E</td>
<td>E P</td>
<td>E P</td>
</tr>
<tr>
<td>insert</td>
<td>X</td>
<td>3</td>
<td>P E X</td>
<td>E P X</td>
<td>E P X</td>
</tr>
<tr>
<td>insert</td>
<td>A</td>
<td>4</td>
<td>P E XA</td>
<td>A E P X</td>
<td>A E P X</td>
</tr>
<tr>
<td>insert</td>
<td>M</td>
<td>5</td>
<td>P E XA M</td>
<td>A E M P X</td>
<td>A E M P X</td>
</tr>
<tr>
<td>remove max</td>
<td>X</td>
<td>4</td>
<td>P E MA</td>
<td>A E M P</td>
<td>A E M P</td>
</tr>
<tr>
<td>insert</td>
<td>P</td>
<td>5</td>
<td>P E MA P</td>
<td>A E M P</td>
<td>A E M P</td>
</tr>
<tr>
<td>insert</td>
<td>L</td>
<td>6</td>
<td>P E MAP L</td>
<td>A E L M P P</td>
<td>A E L M P P</td>
</tr>
<tr>
<td>insert</td>
<td>E</td>
<td>7</td>
<td>P E MAP L E</td>
<td>A E E L M P P</td>
<td>A E E L M P P</td>
</tr>
<tr>
<td>remove max</td>
<td>P</td>
<td>6</td>
<td>E EM A P L</td>
<td>A E E L M P</td>
<td>A E E L M P</td>
</tr>
</tbody>
</table>
In the worst case, what are the running times for \texttt{INSERT} and \texttt{DELETE-MAX}, respectively, for a priority queue implemented with an \textit{ordered array}?

\begin{itemize}
 \item[A.] 1 and \(n\)
 \item[B.] 1 and \(\log n\)
 \item[C.] \(\log n\) and 1
 \item[D.] \(n\) and 1
\end{itemize}
Priority queue: implementations cost summary

Challenge. Implement all operations efficiently.

<table>
<thead>
<tr>
<th>implementation</th>
<th>INSERT</th>
<th>DELETE-MAX</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered list</td>
<td>1</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>ordered array</td>
<td>n</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>goal</td>
<td>log n</td>
<td>log n</td>
<td>log n</td>
</tr>
</tbody>
</table>

order of growth of running time for priority queue with n items

Solution. “Somewhat-ordered” array.
2.4 PRIORITY QUEUES

- API and elementary implementations
- binary heaps
- heapsort
- event-driven simulation
Complete binary tree

Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Every level (except possibly the last) is completely filled; the last level is filled from left to right.

![Complete binary tree with 16 nodes](image)

Property. Height of complete binary tree with \(n \) nodes is \(\lceil \lg n \rceil \).

Pf. Height increases only when \(n \) is a power of 2.
A complete binary tree in nature
Binary heap: representation

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered tree.
- Keys in nodes.
- Parent’s key no smaller than children’s keys.

Array representation.
- Indices start at 1.
- Take nodes in level order.
- Don’t need explicit links!
Consider the key at index k in a binary heap. What is index of its parent?

A. $k/2 - 1$
B. $k/2$
C. $k/2 + 1$
D. $2 * k$
Binary heap: properties

Proposition. Largest key is at index 1, which is root of binary tree.

Proposition. Can use array indices to move through tree.
- Parent of key at index \(k \) is at index \(k/2 \).
- Children of key at index \(k \) are at indices \(2\times k \) and \(2\times k + 1 \).
Binary heap demo

Insert. Add node at end, then swim it up.
Remove the maximum. Exchange root with node at end, then sink it down.

heap ordered

- T
- P
- N
 - E
 - I
- H
- R
- O
- A

T | P | R | N | H | O | A | E | I | G
Binary heap: promotion

Scenario. A key becomes **larger** than its parent's key.

To eliminate the violation:

- Exchange key in child with key in parent.
- Repeat until heap order restored.

```java
private void swim(int k) {
    while (k > 1 && less(k/2, k)) {
        exch(k, k/2);
        k = k/2;
    }
}
```

Peter principle. Node promoted to level of incompetence.
Binary heap: insertion

Insert. Add node at end in bottom level; then, swim it up.

Cost. At most $1 + \log n$ compares.

```java
public void insert(Key x) {
    pq[++n] = x;
    swim(n);
}
```
Binary heap: demotion

Scenario. A key becomes *smaller* than one (or both) of its children’s key.

To eliminate the violation:
- Exchange key in parent with key in larger child.
- Repeat until heap order restored.

```java
private void sink(int k) {
    while (2*k <= n) {
        int j = 2*k;
        if (j < n && less(j, j+1)) j++;
        if (!less(k, j)) break;
        exch(k, j);
        k = j;
    }
}
```

Power struggle. Better subordinate promoted.
Binary heap: delete the maximum

Delete max. Exchange root with node at end; then, sink it down.

Cost. At most $2 \lg n$ compares.

```java
public Key delMax() {
    Key max = pq[1];
    exch(1, n--);
    sink(1);
    pq[n+1] = null;
    return max;
}
```
public class MaxPQ<Key extends Comparable<Key>>
{
 private Key[] a;
 private int n;

 public MaxPQ(int capacity)
 { a = (Key[]) new Comparable[capacity+1]; }

 public boolean isEmpty()
 { return n == 0; }
 public void insert(Key key) // see previous code
 public Key delMax() // see previous code

 private void swim(int k) // see previous code
 private void sink(int k) // see previous code

 private boolean less(int i, int j)
 { return a[i].compareTo(a[j]) < 0; }
 private void exch(int i, int j)
 { Key t = a[i]; a[i] = a[j]; a[j] = t; }
}

https://algs4.cs.princeton.edu/24pq/MaxPQ.java.html
Priority queue: implementations cost summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>INSERT</th>
<th>DELETE–MAX</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered list</td>
<td>1</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>ordered array</td>
<td>n</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>goal</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>1</td>
</tr>
</tbody>
</table>

Order of growth of running time for priority queue with n items
Goal. Design an efficient data structure to support the following ops:

- **INSERT:** insert a specified key.
- **DELETE-MAX:** delete and return a max key.
- **SAMPLE:** return a random key.
- **DELETE-RANDOM:** delete and return a random key.
Goal. Delete a random key from a binary heap in logarithmic time.
Binary heap: considerations

Underflow and overflow.
- Underflow: throw exception if deleting from empty PQ.
- Overflow: add no-arg constructor and use resizing array.

Minimum-oriented priority queue.
- Replace less() with greater().
- Implement greater().

Other operations.
- Remove an arbitrary item.
- Change the priority of an item.

Immutability of keys.
- Assumption: client does not change keys while they’re on the PQ.
- Best practice: use immutable keys.
Immutability: implementing in Java

Data type. Set of values and operations on those values.

Immutable data type. Can’t change the data type value once created.

```java
public final class Vector {
    private final int n;
    private final double[] data;

    public Vector(double[] data) {
        this.n = data.length;
        this.data = new double[n];
        for (int i = 0; i < n; i++)
            this.data[i] = data[i];
    }
}
```

Immutable in Java. String, Integer, Double, Color, File, ...

Mutable in Java. StringBuilder, Stack, URL, arrays, ...

Instance variables private and final (neither necessary nor sufficient, but good programming practice)

Defensive copy of mutable instance variables

Instance methods don’t change instance variables
Immutability: properties

Data type. Set of values and operations on those values.

Immutable data type. Can’t change the data type value once created.

Advantages.
- Simplifies debugging.
- Simplifies concurrent programming.
- More secure in presence of hostile code.
- Safe to use as key in priority queue or symbol table.

Disadvantage. Must create new object for each data-type value.

“Classes should be immutable unless there’s a very good reason to make them mutable…. If a class cannot be made immutable, you should still limit its mutability as much as possible.”

— Joshua Bloch (Java architect)
Binary heap: practical improvements

Do “half exchanges” in sink and swim.

- Reduces number of array accesses.
- Worth doing.
Floyd’s “bounce” heuristic.

- Sink key at root all the way to bottom.
 only 1 compare per node
- Swim key back up.
 some extra compares and exchanges
- Overall, fewer compares; more exchanges.
Multiway heaps.
- Complete d-way tree.
- Parent’s key no smaller than its children’s keys.

Fact. Height of complete d-way tree on n nodes is $\sim \log_d n$.

3-way heap
In the worst case, how many compares to \texttt{INSERT} and \texttt{DELETE-MAX} in a \(d\)-way heap as function of \(n\) and \(d\)?

A. \(\sim \log_d n\) and \(\sim \log_d n\)

B. \(\sim \log_d n\) and \(\sim d \log_d n\)

C. \(\sim d \log_d n\) and \(\sim \log_d n\)

D. \(\sim d \log_d n\) and \(\sim d \log_d n\)
Priority queue: implementation cost summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>INSERT</th>
<th>DELETE-MAX</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>unordered array</td>
<td>1</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>ordered array</td>
<td>n</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>binary heap</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>1</td>
</tr>
<tr>
<td>d-ary heap</td>
<td>$\log_d n$</td>
<td>$d \log_d n$</td>
<td>1</td>
</tr>
<tr>
<td>Fibonacci</td>
<td>1</td>
<td>$\log n ^\dagger$</td>
<td>1</td>
</tr>
<tr>
<td>Brodal queue</td>
<td>1</td>
<td>$\log n$</td>
<td>1</td>
</tr>
<tr>
<td>impossible</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

† amortized

sweet spot: $d = 4$

why impossible?

order-of-growth of running time for priority queue with n items
2.4 Priority Queues

- API and elementary implementations
- Binary heaps
- Heapsort
- Event-driven simulation
What are the properties of this sorting algorithm?

public void sort(String[] a) {
 int n = a.length;
 MaxPQ<String> pq = new MaxPQ<String>();
 for (int i = 0; i < n; i++)
 pq.insert(a[i]);
 for (int i = n-1; i >= 0; i--)
 a[i] = pq.delMax();
}

A. $n \log n$ compares in the worst case.
B. In-place.
C. Stable.
D. All of the above.
Heapsort

Basic plan for in-place sort.

- View input array as a complete binary tree.
- Heap construction: build a max-heap with all n keys.
- Sortdown: repeatedly remove the maximum key.

```
keys in arbitrary order
```

```
build max heap (in place)
```

```
sorted result (in place)
```
Heapsort demo

Heap construction. Build max heap using bottom-up method.

for now, assume array entries are indexed 1 to n

array in arbitrary order

```
S O R T T E X A M P L E
1 2 3 4 5 6 7 8 9 10 11
```
Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

Array in sorted order
Heapsort: heap construction

First pass. Build heap using bottom-up method.

Key property. After $\text{sink}(a, k, n)$ completes, tree rooted at k is a heap.

```
for (int k = n/2; k >= 1; k--)
    sink(a, k, n);
```

Starting point (arbitrary order)

Result (heap-ordered)
Heapsort: sortdown

Second pass.

- Remove the maximum, one at a time.
- Leave in array, instead of nulling out.

```
while (n > 1)
{
    exch(a, 1, n--);
    sink(a, 1, n);
}
```
Heapsort: Java implementation

```java
public class Heap {
    public static void sort(Comparable[] a) {
        int n = a.length;
        for (int k = n/2; k >= 1; k--)
            sink(a, k, n);
        while (n > 1)
            { 
            exch(a, 1, n);
            sink(a, 1, --n);
            }
    }

    private static void sink(Comparable[] a, int k, int n) {
        /* as before */
    }

    private static boolean less(Comparable[] a, int i, int j) {
        /* as before */
    }

    private static void exch(Object[] a, int i, int j) {
        /* as before */
    }
}

https://algs4.cs.princeton.edu/24pq/Heap.java.html
```

Heapsort: Java implementation

but make static (and pass arguments)

but convert from 1-based indexing to 0-base indexing
Heapsort: trace

<table>
<thead>
<tr>
<th>N</th>
<th>k</th>
<th>a[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>5</td>
<td>S O R T E X A M P L E</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>S O R T L X A M P L E</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>S O X T L R A M P L E</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>S T X P L R A M O E E</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>X T S P L R A M O E E</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>T P S O L R A M E E X</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>S P R O L E A M E T X</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>R P E O L E A M S T X</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>P O E M L E A R S T X</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>O M E A L E P R S T X</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>M L E A E O P R S T X</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>L E E A M O P R S T X</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>E A E L M O P R S T X</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>E A E L M O P R S T X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>A E E L M O P R S T X</td>
</tr>
</tbody>
</table>

initial values

heap-ordered

sorted result

Heapsort trace (array contents just after each sink)
Heapsort animation

50 random items

https://www.toptal.com/developers/sorting-algorithms/heap-sort
Heapsort: mathematical analysis

Proposition. Heap construction makes $\leq n$ exchanges and $\leq 2n$ compares.

Pf sketch. [assume $n = 2^{h+1} - 1$]

$$h + 2(h-1) + 4(h-2) + 8(h-3) + \ldots + 2^h(0) = 2^{h+1} - h - 2$$
$$= n - (h - 1)$$
$$\leq n$$
Heapsort: mathematical analysis

Proposition. Heap construction makes $\leq n$ exchanges and $\leq 2n$ compares.

Proposition. Heapsort uses $\leq 2n \ lg \ n$ compares and exchanges.

algorithm can be improved to $\sim n \ lg \ n$
(but no such variant is known to be practical)

Significance. In-place sorting algorithm with $n \ log \ n$ worst-case.

- Mergesort: no, linear extra space.
- Quicksort: no, quadratic time in worst case.
- Heapsort: yes!

Bottom line. Heapsort is optimal for both time and space, but:

- Inner loop longer than quicksort’s.
- Makes poor use of cache.
- Not stable.

can be improved using advanced caching tricks
Introsort

Goal. As fast as quicksort in practice; $\log n$ worst case, in place.

Introsort.

- Run quicksort.
- Cutoff to heapsort if stack depth exceeds $2 \log n$.
- Cutoff to insertion sort for $n = 16$.

In the wild. C++ STL, Microsoft .NET Framework.
Sorting algorithms: summary

<table>
<thead>
<tr>
<th></th>
<th>inplace?</th>
<th>stable?</th>
<th>best</th>
<th>average</th>
<th>worst</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection</td>
<td>✔</td>
<td></td>
<td>$\frac{1}{2} n^2$</td>
<td>$\frac{1}{2} n^2$</td>
<td>$\frac{1}{2} n^2$</td>
<td>n exchanges</td>
</tr>
<tr>
<td>insertion</td>
<td>✔</td>
<td>✔</td>
<td>n</td>
<td>$\frac{1}{4} n^2$</td>
<td>$\frac{1}{2} n^2$</td>
<td>use for small n or partially ordered</td>
</tr>
<tr>
<td>merge</td>
<td>✔</td>
<td></td>
<td>$\frac{1}{2} n \lg n$</td>
<td>$n \lg n$</td>
<td>$n \lg n$</td>
<td>$n \log n$ guarantee; stable</td>
</tr>
<tr>
<td>timsort</td>
<td>✔</td>
<td></td>
<td>n</td>
<td>$n \lg n$</td>
<td>$n \lg n$</td>
<td>improves mergesort when preexisting order</td>
</tr>
<tr>
<td>quick</td>
<td>✔</td>
<td></td>
<td>$n \lg n$</td>
<td>$2 n \ln n$</td>
<td>$\frac{1}{2} n^2$</td>
<td>$n \log n$ probabilistic guarantee; fastest in practice</td>
</tr>
<tr>
<td>3-way quick</td>
<td>✔</td>
<td></td>
<td>n</td>
<td>$2 n \ln n$</td>
<td>$\frac{1}{2} n^2$</td>
<td>improves quicksort when duplicate keys</td>
</tr>
<tr>
<td>heap</td>
<td>✔</td>
<td>✔</td>
<td>$3 n$</td>
<td>$2 n \lg n$</td>
<td>$2 n \lg n$</td>
<td>$n \log n$ guarantee; in-place</td>
</tr>
<tr>
<td>?</td>
<td>✔</td>
<td>✔</td>
<td>n</td>
<td>$n \lg n$</td>
<td>$n \lg n$</td>
<td>holy sorting grail</td>
</tr>
</tbody>
</table>