
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

https://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/23/19 11:07 AM

2.1 ELEMENTARY SORTS

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shuffling

‣ comparators

‣ stability

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shuffling

‣ comparators

‣ stability

2.1 ELEMENTARY SORTS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Sorting problem

Ex. Student records in a university.

Sort. Rearrange array of n items in ascending order by key.

 3

item

key

Chen 3 A (991) 878–4944 308 Blair

Rohde 2 A (232) 343–5555 343 Forbes

Gazsi 4 B (800) 867–5309 101 Brown

Furia 1 A (766) 093–9873 101 Brown

Kanaga 3 B (898) 122–9643 22 Brown

Andrews 3 A (664) 480–0023 097 Little

Battle 4 C (874) 088–1212 121 Whitman

Andrews 3 A (664) 480–0023 097 Little

Battle 4 C (874) 088–1212 121 Whitman

Chen 3 A (991) 878–4944 308 Blair

Furia 1 A (766) 093–9873 101 Brown

Gazsi 4 B (800) 867–5309 101 Brown

Kanaga 3 B (898) 122–9643 22 Brown

Rohde 2 A (232) 343–5555 343 Forbes

Library of Congress order

numerical order (descending)

playing card order

Sorting is a well-defined problem if and only if there is a total order.

 
A total order is a binary relation ≤ that satisfies:

独Totality: either v ≤ w or w ≤ v or both.

独Transitivity: if both v ≤ w and w ≤ x, then v ≤ x.

独Antisymmetry: if both v ≤ w and w ≤ v, then v = w.

 
Examples.

chronological order
 4

Total order

lexicographic order

Sorting is a well-defined problem if and only if there is a total order.

 
A total order is a binary relation ≤ that satisfies:

独Totality: either v ≤ w or w ≤ v or both.

独Transitivity: if both v ≤ w and w ≤ x, then v ≤ x.

独Antisymmetry: if both v ≤ w and w ≤ v, then v = w.

 
Non-examples.

 5

Total order

Ro–sham–bo order
(violates transitivity)

COS 126

COS 226 COS 217

COS 423 COS 333

course prerequisites
(violates totality)

predator–prey
(violates antisymmetry)

Goal. Single function that sorts any type of data (that has a total order).

Ex 1. Sort strings in alphabetical order.

public class StringSorter
{
 public static void main(String[] args)
 {
 String[] a = StdIn.readAllStrings();
 Insertion.sort(a);
 for (int i = 0; i < a.length; i++)
 StdOut.println(a[i]);
 }
}

% more words3.txt

bed bug dad yet zoo ... all bad yes

% java StringSorter < words3.txt

all bad bed bug dad ... yes yet zoo

[suppressing newlines]

 6

Sample sort clients

Goal. Single function that sorts any type of data (that has a total order).

Ex 2. Sort random real numbers in ascending order.

 7

Sample sort clients

seems artificial (stay tuned for an application)

% java Experiment 10

0.08614716385210452

0.09054270895414829

0.10708746304898642

0.21166190071646818
0.363292849257276

0.460954145685913

0.5340026311350087

0.7216129793703496

0.9003500354411443

0.9293994908845686

public class Experiment
{
 public static void main(String[] args)
 {
 int n = Integer.parseInt(args[0]);
 Double[] a = new Double[n];
 for (int i = 0; i < n; i++)
 a[i] = StdRandom.uniform();
 Insertion.sort(a);
 for (int i = 0; i < n; i++)
 StdOut.println(a[i]);
 }
}

Goal. Single function that sorts any type of data (that has a total order).

Ex 3. Sort the files in a given directory by filename.

 8

% java FileSorter .

Insertion.class

Insertion.java

InsertionX.class

InsertionX.java

Selection.class
Selection.java

Shell.class

Shell.java

ShellX.class

ShellX.java

Sample sort clients

import java.io.File;

public class FileSorter
{
 public static void main(String[] args)
 {
 File directory = new File(args[0]);
 File[] files = directory.listFiles();
 Insertion.sort(files);
 for (int i = 0; i < files.length; i++)
 StdOut.println(files[i].getName());
 }
}

How can a single function sort any type of data?

Goal. Single function that sorts any type of data (that has a total order).

 
Solution. Callback = reference to executable code.

 9

No problem. Whenever you need to
compare two words, give me a call back.

Please sort these Japanese names for me:
͘ΜΕ, ίϳϬ, Ayumi, 䴿ᗦ, ….

But I don’t speak Japanese and I
don’t know how words are ordered.

ηЄξЄ. Just make sure
to use a total order.

Callbacks

Goal. Single function that sorts any type of data (that has a total order).

 
Solution. Callback = reference to executable code.

独Client passes array of objects to sort() function.

独The sort() function calls object’s compareTo() function as needed.

 
Implementing callbacks.

独Java: interfaces.

独C: function pointers.

独C++: class-type functors.

独C#: delegates.

独Python, Perl, ML, Javascript: first-class functions.

 10

Java interfaces

Interface. A type that defines a set of methods that a class can provide.

 
 
 
 
Class that implements interface. Must implement all interface methods.

 
 
 
 
 
 
Impact.

独You can treat any String object as an object of type Comparable.

独On a Comparable object, you can invoke (only) the compareTo() method.

独Enables callbacks.

 11

 
public class String implements Comparable<String>
{
 ...

 public int compareTo(String that)  
 { 
 ...

 } 
}

public interface Comparable<Item>
{
 public int compareTo(Item that);
}

class promises to

honor the contract

class abides by

the contract

“polymorphism”

contract: one method with this signature

(and prescribed behavior)

public class String
implements Comparable<String>

{
 ...

 public int compareTo(String that)
 {
 ...
 }
}

data type implementation (String.java)

Callbacks in Java: roadmap

 12

client (StringSorter.java)

public class StringSorter
{
 public static void main(String[] args)
 {
 String[] a = StdIn.readAllStrings();
 Insertion.sort(a);
 for (int i = 0; i < a.length; i++)
 StdOut.println(a[i]);
 }
}

sort implementation (Insertion.java)

public static void sort(Comparable[] a)
{
 int n = a.length;
 for (int i = 0; i < n; i++)
 for (int j = i; j > 0; j--)
 if (a[j].compareTo(a[j-1]) < 0)
 exch(a, j, j-1);
 else break;
}

java.lang.Comparable interface

public interface Comparable<Item>
{
 public int compareTo(Item that);
}

key point: client code does not  
depend upon type of data to be sorted

callback

Elementary sorts: quiz 1

Suppose that the Java architects left out implements Comparable<String>  
in the class declaration for String. Which would be the e"ect?

A. String.java won’t compile.

B. StringSorter.java won’t compile.

C. Insertion.java won’t compile.

D. Insertion.java will throw an exception.

 13

argument a[] in call to Insertion.sort(a)

must be Comparable[]

Implement compareTo() so that v.compareTo(w)

独Returns a

– negative integer if v is less than w

– positive integer if v is greater than w

– zero if v is equal to w

独Defines a total order.

独Throws an exception if incompatible types (or either is null).

 
 
 
 
 
 
 
Built-in comparable types. Integer, Double, String, Date, File, ...

User-defined comparable types. Implement the Comparable interface.

 14

Comparable API

greater than
(return positive integer)

v

w

less than
(return negative integer)

v
w

equal to
(return 0)

v w

v.compareTo(w) <= 0 
means v is less than or equal to w

Date data type. Simplified version of java.util.Date.

 15

Implementing the Comparable interface

can compare Date objects 
only to other Date objects

https://algs4.cs.princeton.edu/12oop/Date.java.html

public class Date implements Comparable<Date> 
{ 
 private final int month, day, year;  
 

 public Date(int m, int d, int y) 
 { 
 month = m;  
 day = d;  
 year = y;  
 } 

 public int compareTo(Date that)  
 { 
 if (this.year < that.year) return -1; 
 if (this.year > that.year) return +1; 
 if (this.month < that.month) return -1; 
 if (this.month > that.month) return +1; 
 if (this.day < that.day) return -1; 
 if (this.day > that.day) return +1; 
 return 0; 
 } 
}

https://algs4.cs.princeton.edu/12oop/Date.java.html

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shuffling

‣ comparators

‣ stability

2.1 ELEMENTARY SORTS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Selection sort demo

独In iteration i, find index min of smallest remaining entry.

独Swap a[i] and a[min].

 17

initial

Selection sort

Algorithm. ↑ scans from left to right.

Invariants.

独Entries the left of ↑ (including ↑) fixed and in ascending order.

独No entry to right of ↑ is smaller than any entry to the left of ↑.

 18

in final order ↑

 19

Selection sort inner loop

To maintain algorithm invariants: 

独Move the pointer to the right.  
 
 

独Identify index of minimum entry on right. 
 
 
 
 
 

独Exchange into position.

i++;

↑in final order

in final order

exch(a, i, min);
↑↑

int min = i;
for (int j = i+1; j < n; j++)
 if (less(a[j], a[min]))
 min = j;

↑↑in final order

Helper functions. Refer to data only through compares and exchanges.

 
Less. Is item v less than w ?

 
Exchange. Swap item in array a[] at index i with the one at index j.

 20

Two useful sorting abstractions

private static boolean less(Comparable v, Comparable w)
{ return v.compareTo(w) < 0; }

private static void exch(Object[] a, int i, int j)
{
 Object swap = a[i];
 a[i] = a[j];
 a[j] = swap;
}

polymorphism: you can treat any

object as an object of type Object

 21

Selection sort: Java implementation

https://algs4.cs.princeton.edu/21elementary/Selection.java.html

public class Selection
{
 public static void sort(Comparable[] a)
 {
 int n = a.length;
 for (int i = 0; i < n; i++)
 {
 int min = i;  
 for (int j = i+1; j < n; j++)
 if (less(a[j], a[min]))
 min = j;
 exch(a, i, min);
 }
 }

 private static boolean less(Comparable v, Comparable w)
 { /* see previous slide */ }

 private static void exch(Object[] a, int i, int j)
 { /* see previous slide */ }
}

https://algs4.cs.princeton.edu/21elementary/Selection.java.html

Generic methods

Oops. The compiler complains. 
 
 
 
 
 
 
 

Q. How to appease the compiler?

 % javac-algs4 Selection.java

 Selection.java:83: warning: [unchecked] unchecked call to  
 compareTo(T) as a member of the raw type java.lang.Comparable

 return (v.compareTo(w) < 0);

 ^

1 warning

 22

Generic methods

Pedantic (type-safe) version. Compiles without any warnings.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark. Use type-safe version in system code (but not in lecture).

 23

public class SelectionPedantic
{
 public static <Key extends Comparable<Key>> void sort(Key[] a)
 { /* as before */ }

 private static <Key extends Comparable<Key>> boolean less(Key v, Key w)
 { /* as before */ }

 private static void exch(Object[] a, int i, int j)
 { /* as before */ }
}  

generic type variable (for a static method) 
(type inferred from argument; must be Comparable)

https://algs4.cs.princeton.edu/21elementary/SelectionPedantic.java.html

and Assignment 3

https://algs4.cs.princeton.edu/21elementary/SelectionPedantic.java.html

Selection sort: animations

 24

http://www.sorting-algorithms.com/selection-sort

20 random items

in final order

not in final order

algorithm position

Elementary sorts: quiz 2

How many compares does selection sort make to sort an array of n
distinct items in reverse order?

A. ~ n

B. ~ 1/4 n2

C. ~ 1/2 n2

D. ~ n2

 25

Selection sort: mathematical analysis

Proposition. Selection sort makes (n – 1) + (n – 2) + ... + 1 + 0 ~ n 2 / 2 compares

and n exchanges to sort any array of n items.

Running time insensitive to input. Quadratic time, even if input is sorted.

Data movement is minimal. Linear number of exchanges—exactly n.

 26

Trace of selection sort (array contents just after each exchange)

 a[]
 i min 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 0 6 S O R T E X A M P L E
 1 4 A O R T E X S M P L E
 2 10 A E R T O X S M P L E
 3 9 A E E T O X S M P L R
 4 7 A E E L O X S M P T R
 5 7 A E E L M X S O P T R
 6 8 A E E L M O S X P T R
 7 10 A E E L M O P X S T R
 8 8 A E E L M O P R S T X
 9 9 A E E L M O P R S T X
10 10 A E E L M O P R S T X

 A E E L M O P R S T X

entries in gray are
in final position

entries in black
are examined to find

the minimum

entries in red
are a[min]

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shuffling

‣ comparators

‣ stability

2.1 ELEMENTARY SORTS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Insertion sort demo

独In iteration i, swap a[i] with each larger entry to its left.

 28

https://www.youtube.com/watch?v=ROalU379l3U

https://www.youtube.com/watch?v=ROalU379l3U

Insertion sort

Algorithm. ↑ scans from left to right.

Invariants.

独Entries to the left of ↑ (including ↑) are in ascending order.

独Entries to the right of ↑ have not yet been seen.

 29

in order ↑ not yet seen

 30

Insertion sort: inner loop

To maintain algorithm invariants:

独Move the pointer to the right.

独Moving from right to left, exchange 
a[i] with each larger entry to its left.

i++;

in order not yet seen
↑

for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;

in order not yet seen
↑↑↑↑

Insertion sort: Java implementation

 31

https://algs4.cs.princeton.edu/21elementary/Insertion.java.html

public class Insertion
{
 public static void sort(Comparable[] a)
 {
 int n = a.length;
 for (int i = 0; i < n; i++)
 for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private static void exch(Object[] a, int i, int j)
 { /* as before */ }
}

https://algs4.cs.princeton.edu/21elementary/Insertion.java.html

Elementary sorts: quiz 3

How many compares does insertion sort make to sort an array of n
distinct keys in reverse order?

A. ~ n

B. ~ 1/4 n 2

C. ~ 1/2 n 2

D. ~ n 2

 32

Insertion sort: analysis

Worst case. Insertion sort makes ~ ½ n2 compares and ~ ½ n2 exchanges  
to sort an array of n distinct keys in reverse order.

Pf. Exactly i compares and exchanges in iteration i.

 33

in order

not yet seen

algorithm position

http://www.sorting-algorithms.com/insertion-sort

0 + 1 + 2 + … + (n – 1)

Elementary sorts: quiz 4

Which is faster in practice to sort an array of n items,  
selection sort or insertion sort?

A. Selection sort.

B. Insertion sort.

C. No significant difference.

D. It depends.

 34

Best case. Insertion sort makes n – 1 compares and 0 exchanges to sort 
an array of n distinct keys in ascending order.

Insertion sort: analysis

 35

in order

not yet seen

algorithm position

http://www.sorting-algorithms.com/insertion-sort

Good case. Insertion sort is linear time for “partially sorted” arrays.

 
Q. What do we mean by partially sorted?

Insertion sort: analysis

 36

in order

not yet seen

algorithm position

http://www.sorting-algorithms.com/insertion-sort

Insertion sort: partially sorted arrays

Def. An inversion is a pair of keys that are out of order.

 
 
 
 
Def. A family of arrays is partially sorted if the number of inversions is ≤ c n.

独Ex 1. A sorted array.

独Ex 2. A subarray of length 10 appended to a sorted subarray of length n.

 
 
Proposition. Insertion sort runs in linear time on partially sorted arrays.

Pf.

独Number of exchanges in insertion sort = number of inversions.

独Number of compares ≤ number of exchanges + (n − 1).

 37

 A E E L M O T R X P S

(6 inversions)

each compare in iteration i triggers one exchange

(except possibly last one in iteration)

exchange decreases number of inversions by 1

1 2 3 4 5 6

T–R T–P T–S R–P X–P X–S

≤ 10n + 45 inversions

Insertion sort: practical improvements

Half exchanges. Shift items over (instead of exchanging).

独Eliminates unnecessary data movement.

独No longer uses only less() and exch() to access data.

 
 
 
 
 
 
Binary insertion sort. Use binary search to find insertion point.

独Number of compares ~ n log2 n .

独But still a quadratic number of array accesses.

 38

 A C H H I M N N P Q X Y K B I N A R Y

binary search for first key > K

 A C H H I B I N A R YKM N N P Q X Y

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shuffling

‣ comparators

‣ stability

2.1 ELEMENTARY SORTS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

INTERVIEW QUESTION: SHUFFLE AN ARRAY

Goal. Rearrange array so that result is a uniformly random permutation.

 40

all n ! permutations

equally likely

Shuffling by sorting

独Generate a random real number for each array entry.

独Sort the array.

 42

0.14190.1576 0.42180.48540.8003 0.9157 0.95720.96490.9706

Shuffling by sorting

独Generate a random real number for each array entry.

独Sort the array.

 
Proposition. Shuffle sort produces a uniformly random permutation.

 
Application. Shuffle columns in a spreadsheet.

 44

assuming real numbers are 
uniformly random (and no ties)

0.1419 0.1576 0.4218 0.4854 0.8003 0.9157 0.9572 0.9649 0.9706

INTERVIEW QUESTION: SHUFFLE AN ARRAY

Goal. Rearrange array so that result is a uniformly random permutation.

 
 
 
 
 
 
 
 
 
Shuffling by sorting.

独Quadratic time (with insertion sort or selection sort).

独Linearithmic time (with mergesort).

 
Challenge. Design a linear-time algorithm (without sorting).

 45

all n ! permutations

equally likely

SHUFFLING HALL OF SHAME (MICROSOFT)

Microsoft antitrust probe by EU. Microsoft agreed to provide a

randomized ballot screen for users to select browser.

 46

appeared last

50% of the time

SHUFFLING HALL OF SHAME (PLANETPOKER.COM)

Texas hold’em poker. Software must shuffle electronic cards.

 47

How We Learned to Cheat at Online Poker: A Study in Software Security
https://www.developer.com/tech/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm

https://www.developer.com/tech/article.php/616221/How-We-Learned-to-Cheat-at-Online-Poker-A-Study-in-Software-Security.htm

SHUFFLING HALL OF SHAME (PRINCETON)

Ivy league school room draw. Students assigned random room draw times.

 48

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shuffling

‣ comparators

‣ stability

2.1 ELEMENTARY SORTS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Different orderings

Q. When might we need to define different sort orderings?

 50

 51

Sort music library by artist

Sort music library by song name

 52

public class Date implements Comparable<Date> 
{
 private final int month, day, year;

 public Date(int m, int d, int y) 
 {
 month = m;
 day = d;
 year = y;
 }
 ...

 public int compareTo(Date that)  
 {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
}

Comparable interface: review

Comparable interface: sort using a type’s natural order.

 53

natural order

https://algs4.cs.princeton.edu/12oop/Date.java.html

https://algs4.cs.princeton.edu/12oop/Date.java.html

Comparator interface: sort using an alternate order.

 
 
 
 
 
 
Required property. Must be a total order.

 54

Comparator interface

string order example

natural order Now is the time

case insensitive is Now the time

Spanish language café cafetero cuarto churro nube ñoño

British phone book McKinley Mackintosh

pre-1994 order for

digraphs ch and ll and rr

public interface Comparator<Item>
{
 public int compare(Item v, Item w);
}

 55

Comparator interface: system sort

To use with Java system sort:

独Create Comparator object.

独Pass as second argument to Arrays.sort().

 
 
 
 
 
 
 
 
 
 
 
Bottom line. Decouples the definition of the data type from the 
definition of what it means to compare two objects of that type.

 
String[] a;  
... 
Arrays.sort(a); 
...
Arrays.sort(a, String.CASE_INSENSITIVE_ORDER); 
...
Arrays.sort(a, Collator.getInstance(new Locale("es"))); 
...
Arrays.sort(a, new BritishPhoneBookOrder()); 
... 

uses alternate order defined by

Comparator<String> object

uses natural order

To implement a comparator:

独Define a (nested) class that implements the Comparator interface.

独Implement the compare() method.

独Provide client access to Comparator.

 56

Comparator interface: implementing

import java.util.Comparator;

public class Student  
{  
 private final String name; 
 private final int section; 
 ...

 private static class NameOrder implements Comparator<Student>
 { 
 public int compare(Student v, Student w)  
 { return v.name.compareTo(w.name); }  
 }
 public static Comparator<Student> byNameOrder() 
 { return new NameOrder(); }
 
}

one Comparator for the class

https://algs4.cs.princeton.edu/12oop/Student.java.html

https://algs4.cs.princeton.edu/12oop/Student.java.html

To implement a comparator:

独Define a (nested) class that implements the Comparator interface.

独Implement the compare() method.

独Provide client access to Comparator.

import java.util.Comparator;

public class Student
{
 private final String name;
 private final int section;
 ...

 private static class SectionOrder implements Comparator<Student>
 {
 public int compare(Student v, Student w)
 { return Integer.compare(v.section, w.section); }
 }
 public static Comparator<Student> bySectionOrder()
 { return new SectionOrder(); }
  

}

 57

Comparator interface: implementing

useful library

method

To implement a comparator:

独Define a (nested) class that implements the Comparator interface.

独Implement the compare() method.

独Provide client access to Comparator.

Andrews 3 A (664) 480–0023 097 Little

Battle 4 C (874) 088–1212 121 Whitman

Chen 3 A (991) 878–4944 308 Blair

Fox 3 A (884) 232–5341 11 Dickinson

Furia 1 A (766) 093–9873 101 Brown

Gazsi 4 B (800) 867–5309 101 Brown

Kanaga 3 B (898) 122–9643 22 Brown

Rohde 2 A (232) 343–5555 343 Forbes

 58

Comparator interface: implementing

Insertion.sort(a, Student.byNameOrder()); Insertion.sort(a, Student.bySectionOrder());

Furia 1 A (766) 093–9873 101 Brown

Rohde 2 A (232) 343–5555 343 Forbes

Andrews 3 A (664) 480–0023 097 Little

Chen 3 A (991) 878–4944 308 Blair

Fox 3 A (884) 232–5341 11 Dickinson

Kanaga 3 B (898) 122–9643 22 Brown

Battle 4 C (874) 088–1212 121 Whitman

Gazsi 4 B (800) 867–5309 101 Brown

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shuffling

‣ comparators

‣ stability

2.1 ELEMENTARY SORTS

https://algs4.cs.princeton.edu

sk ipped in le ct ure

(see precept)

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Stability

A typical application. First, sort by name; then sort by section.

@#%&@! Students in section 3 no longer sorted by name.

A stable sort preserves the relative order of items with equal keys.

 60

Selection.sort(a, Student.byNameOrder());

Andrews 3 A (664) 480–0023 097 Little

Battle 4 C (874) 088–1212 121 Whitman

Chen 3 A (991) 878–4944 308 Blair

Fox 3 A (884) 232–5341 11 Dickinson

Furia 1 A (766) 093–9873 101 Brown

Gazsi 4 B (800) 867–5309 101 Brown

Kanaga 3 B (898) 122–9643 22 Brown

Rohde 2 A (232) 343–5555 343 Forbes

Selection.sort(a, Student.bySectionOrder());

Furia 1 A (766) 093–9873 101 Brown

Rohde 2 A (232) 343–5555 343 Forbes

Chen 3 A (991) 878–4944 308 Blair

Fox 3 A (884) 232–5341 11 Dickinson

Andrews 3 A (664) 480–0023 097 Little

Kanaga 3 B (898) 122–9643 22 Brown

Gazsi 4 B (800) 867–5309 101 Brown

Battle 4 C (874) 088–1212 121 Whitman

Which sorting algorithm(s) are stable?

A. Selection sort.

B. Insertion sort.

C. Both A and B.

D. Neither A nor B.

 61

Elementary sorts: quiz 5

Stability: insertion sort

Proposition. Insertion sort is stable.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Pf. Equal items never move past each other.

 62

public class Insertion  
{
 public static void sort(Comparable[] a)
 { 
 int n = a.length;  
 for (int i = 0; i < n; i++)  
 for (int j = i; j > 0 && less(a[j], a[j-1]); j--) 
 exch(a, j, j-1);
 }
}

i j 0 1 2 3 4

0 0 B1 A1 A2 A3 B2

1 0 A1 B1 A2 A3 B2

2 1 A1 A2 B1 A3 B2

3 2 A1 A2 A3 B1 B2

4 4 A1 A2 A3 B1 B2

A1 A2 A3 B1 B2

Stability: selection sort

Proposition. Selection sort is not stable.

 
 
 
 
 
 
 
 
 
 
 
 
 
Pf by counterexample. Long-distance exchange can move an equal item  
past another one.

 63

public class Selection
{
 public static void sort(Comparable[] a)
 { 
 int n = a.length;  
 for (int i = 0; i < n; i++)  
 { 
 int min = i;  
 for (int j = i+1; j < n; j++)  
 if (less(a[j], a[min]))  
 min = j;  
 exch(a, i, min); 
 }
 }
}

i min 0 1 2

0 2 B1 B2 A

1 1 A B2 B1

2 2 A B2 B1

A B2 B1

