
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/12/19 10:17 AM

‣ union–find data type

‣ quick-find

‣ quick-union

‣ improvements

‣ applications

1.5 UNION–FIND

https://algs4.cs.princeton.edu

see precept

https://algs4.cs.princeton.edu

Steps to developing a usable algorithm to solve a computational problem.

 2

Subtext of today’s lecture (and this course)

efficient?

no

yes

model the

problem

design an

algorithm

understand

why not

solve the

problem

try again

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ union–find data type

‣ quick-find

‣ quick-union

‣ improvements

‣ applications

1.5 UNION–FIND

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Disjoint sets. A collection of sets containing n elements;  
each element in exactly one set.

 
Find. Return a “canonical” element in the set containing p ?
Union. Merge the set containing p with the set containing q.

 
 
 
 
 
 
 
 
 
Simplifying assumption. The n elements are named 0, 1, …, n – 1.

 4

Union–find data type

{ 0 } { 1, 4, 5 } { 2, 3, 6, 7 }

8 elements, 3 disjoint sets

{ 0 } { 1, 2, 3, 4, 5, 6, 7 }

2 disjoint sets

union(2, 5)find(1) = find(4) = find(5) = 4

 5

Goal. Design an efficient union–find data type.

独Number of elements n can be huge.

独Number of operations m can be huge.

独Union and find operations can be intermixed.

Union–find data type (API)

 public class UF

UF(int n)
initialize union–find data structure  

with n singleton sets (0 to n – 1)

void union(int p, int q)
merge sets containing

elements p and q

int find(int p) canonical element in set  
containing p (0 to n – 1)

Given n vertices, support two operations:

独Add edge: directly connect two vertices with an edge.

独Connection query: is there a path connecting two vertices?

 6

An application: dynamic connectivity

add edge 4–3

add edge 3–8

add edge 6–5

add edge 9–4

add edge 2–1

are 8 and 9 connected?

are 5 and 7 connected?

add edge 5–0

add edge 7–2

are 5 and 7 connected?

add edge 1–0

add edge 6–1

0 1 2 3 4

5 6 7 8 9

✔

!

✔

Q. Is there a path connecting vertices v and w ?

 
 
 
 
 
 
 
 
 
 
 
 
 
 
A. Yes.

 7

A larger connectivity example

v

w

finding a path is a slightly harder problem

(stay tuned for graph algorithms in Chapter 4)

Q. How to model the dynamic-connectivity problem using union–find?

A. Maintain disjoint sets that correspond to connected components.

 8

Modeling the dynamic-connectivity problem

0 1 2 3

4 5 6 7

3 connected components

{ 0 } { 1, 4, 5 } { 2, 3, 6, 7 }

3 disjoint sets

Connected component. Maximal set of vertices that are mutually connected.

Q. How to model the dynamic-connectivity problem using union–find?

A. Maintain disjoint sets that correspond to connected components.

 9

Modeling the dynamic-connectivity problem

{ 0 } { 1, 4, 5 } { 2, 3, 6, 7 }

3 disjoint sets

0 1 2 3

4 5 6 7

3 connected components

0 1 2 3

4 5 6 7

2 connected components

union(2, 5)

{ 0 } { 1, 2, 3, 4, 5, 6, 7 }

2 disjoint sets

add edge 2–5 are vertices 5 and 6 connected?

find(5) == find(6) ✔

独Add edge between vertices v and w.

独Are vertices v and w connected?

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ union–find data type

‣ quick-find

‣ quick-union

‣ improvements

‣ applications

1.5 UNION–FIND

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

 11

Data structure.

独Integer array id[] of length n.

独Interpretation: id[p] is canonical element in the set containing p.

 
 
 
 
 
 
 
 
 
 
Q. How to implement find(p)?

A. Easy, just return id[p].

Quick-find [eager approach]

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

id[]

{ 0, 5, 6 } { 1, 2, 7 } { 3, 4, 8, 9 }

id[i] = 0

3 disjoint sets

id[i] = 1 id[i] = 8

 12

Data structure.

独Integer array id[] of length n.

独Interpretation: id[p] is canonical element in the set containing p.

 
 
 
 
 
 
 
 
 
 
Q. How to implement union(p, q)?

A. Change all entries whose identifier equals id[p] to id[q] (or vice versa).

Quick-find [eager approach]

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

id[]

union(6, 1)

problem: many values can change

1 1

0 1

1 8

2 3

8 1

4 5

1 1

6 7

8 8

8 9

id[]

public class QuickFindUF 
{ 
 private int[] id;  

 public QuickFindUF(int n) 
 { 
 id = new int[n];  
 for (int i = 0; i < n; i++)  
 id[i] = i;  
 }
 
 public int find(int p) 
 { return id[p]; }
 
 public void union(int p, int q)  
 { 
 int pid = id[p];  
 int qid = id[q];  
 for (int i = 0; i < id.length; i++) 
 if (id[i] == pid) id[i] = qid; 
 } 
}

 13

Quick-find: Java implementation

set id of each element to itself  
(n array accesses)

change all entries with id[p] to id[q]

(n + 2 to 2n + 2 array accesses)

return the id of p

(1 array access)

https://algs4.cs.princeton.edu/15uf/QuickFindUF.java.html

https://algs4.cs.princeton.edu/15uf/QuickFindUF.java.html

Cost model. Number of array accesses (for read or write).

 
 
 
 
 
 
 
 
 
 
Union is too expensive. Processing a sequence of n union operations  
on n elements takes more than n2

 array accesses.

 14

Quick-find is too slow

algorithm initialize union find

quick-find n n 1

number of array accesses (ignoring leading constant)

quadratic

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ union–find data type

‣ quick-find

‣ quick-union

‣ improvements

‣ applications

1.5 UNION–FIND

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Data structure.

独Integer array parent[] of length n, where parent[i] is parent of i in tree.

独Interpretation: elements in one tree correspond to one set.

 
 
 
 
 
 
 
 
 
 
Q. How to implement find(p) operation?

A. Return root of tree containing p.

parent of 3 is 4

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

 16

Quick-union [lazy approach]

5

70 1 6

2

{ 0 } { 1 } { 2, 3, 4, 9 } { 5, 6 } { 7 } { 8 }

6 disjoint sets (6 trees)

find(i) = 9

root of 3 is 9

9

p 33

4

8

Quick-union quiz

Data structure.

独Integer array parent[] of length n, where parent[i] is parent of i in tree.

独Interpretation: elements in one tree correspond to one set.

How to implement union(3, 5) ?

A. Set parent[3] = 5.

B. Set parent[9] = 5.

C. Set parent[9] = 6.

D. Set parent[2] = parent[3] = parent[4] = parent[9] = 6.

 17

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

5

70 1 8

p

q

6

52

9

4

3

Data structure.

独Integer array parent[] of length n, where parent[i] is parent of i in tree.

独Interpretation: elements in one tree correspond to one set. 
 

 
 
 
 
 
Q. How to implement union(p, q)?

 18

Quick-union [lazy approach]

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

5

70 1 8

p

q

union(3, 5)

A. Set parent of p’s root to q’s root.

6

52

9

4

3

Data structure.

独Integer array parent[] of length n, where parent[i] is parent of i in tree.

独Interpretation: elements in one tree correspond to one set. 
 

 
 
 
 
 
Q. How to implement union(p, q)?

 19

Quick-union [lazy approach]

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

only one value changes

70 1 8

p

q

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 6

8 9

union(3, 5)

A. Set parent of p’s root to q’s root.

2

9

4

3

6

5

 20

Quick-union demo

0 1 2 3 4 5 6 7 8 9

0 1

0 1

2 3

2 3

4 5

4 5

6 7

6 7

8 9

8 9

Quick-union: Java implementation

public class QuickUnionUF 
{ 
 private int[] parent;
 
 public QuickUnionUF(int n) 
 { 
 parent = new int[n]; 
 for (int i = 0; i < n; i++)  
 parent[i] = i; 
 } 

 public int find(int p) 
 { 
 while (p != parent[p]) 
 p = parent[p]; 
 return p; 
 } 

 public void union(int p, int q)  
 { 
 int r1 = find(p);  
 int r2 = find(q);  
 parent[r1] = r2;  
 } 
}

set parent of each element to itself  
(n array accesses)

chase parent pointers until reach root

(depth of p array accesses)

change root of p to point to root of q

(depth of p and q array accesses)

 21

https://algs4.cs.princeton.edu/15uf/QuickUnionUF.java.html

https://algs4.cs.princeton.edu/15uf/QuickUnionUF.java.html

Cost model. Number of array accesses (for read or write).

 
 
 
 
 
 
 
 
Quick-find defect.

独Union too expensive (more than n array accesses).

独Trees are flat, but too expensive to keep them flat.

 
Quick-union defect.

独Trees can get tall.

独Find too expensive (could be more than n array accesses).

 22

Quick-union is also too slow

0

1

2

3

4 union(0, 1)

union(0, 2)

union(0, 3)

union(0, 4)

worst-case input

algorithm initialize union find

quick-find n n 1

quick-union n n n worst case 

number of array accesses (ignoring leading constant)

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ union–find data type

‣ quick-find

‣ quick-union

‣ improvements

‣ applications

1.5 UNION–FIND

https://algs4.cs.princeton.edu

https://algs4.cs.princeton.edu

Weighted quick-union quiz

When merging two trees, which strategy is most e"ective?

A. Link the root of the smaller tree to the root of the larger tree.

B. Link the root of the larger tree to the root of the smaller tree.

C. Link the root of the shorter tree to the root of the taller tree.

D. Link the root of the taller tree to the root of the shorter tree.

 24

shorter and larger tree
(height = 2, size = 14)

taller and smaller tree
(height = 5, size = 9)

Weighted quick-union.

独Modify quick-union to avoid tall trees.

独Keep track of size of each tree (number of elements).

独Always link root of smaller tree to root of larger tree.

smaller
tree

larger
tree

r
2

r
1

smaller
tree

larger
tree

r
2

r
1

smaller
tree

larger
tree

smaller
tree

larger
tree

Weighted quick-union

weighted

quick-union

always chooses the
better alternative

might put the
larger tree lower

r
2

r
1

r
2

r
1

smaller
tree

larger
tree

r
2

r
1

smaller
tree

larger
tree

r
2

r
1

smaller
tree

larger
tree

smaller
tree

larger
tree

Weighted quick-union

weighted

quick-union

always chooses the
better alternative

might put the
larger tree lower

r
2

r
1

r
2

r
1

 25

Improvement 1: weighting

reasonable alternative:

union by height/rank

Suppose that the parent[] array during weighted quick-union is:

 
 
 
 
 
Which parent[] entry changes during union(2, 6)?

A. parent[0]

B. parent[2]

C. parent[6]

D. parent[8]

9

6

7

8

Weighted quick-union quiz

 26

0 0

0 1

0 0

2 3

0 0

4 5

7 8

6 7

8 8

8 9

parent[]

32

0

1 54

 28

Weighted quick-union demo

0 1 2 3 4 5 6 7 8 9

0 1

0 1

2 3

2 3

4 5

4 5

6 7

6 7

8 9

8 9

parent[]

 29

Quick-union vs. weighted quick-union: larger example

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

 30

Data structure. Same as quick-union, but maintain extra array size[i]  
to count number of elements in the tree rooted at i, initially 1.

独Find: identical to quick-union.

独Union: link root of smaller tree to root of larger tree; update size[].

Weighted quick-union: Java implementation

public void union(int p, int q) 
{ 
 int r1 = find(p);  
 int r2 = find(q);  
 if (r1 == r2) return;
 
 if (size[r1] >= size[r2]) 
 { int temp = r1; r1 = r2; r2 = temp; }
  
 parent[r1] = r2;  
 size[r2] += size[r1]; 
 
}

r1 is root

of smaller tree

link root of smaller tree 
to root of larger tree

https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html

https://algs4.cs.princeton.edu/15uf/WeightedQuickUnionUF.java.html

Running time.

独Find: takes time proportional to depth of p.

独Union: takes constant time, given two roots.

 
Proposition. Depth of any node x is at most lg n.

 31

Weighted quick-union analysis

in computer science, 
lg means base-2 logarithm

 n = 10
depth(x) = 3 ≤ lg n

0

2 2 22

1 111

depth 3 x

 32

Running time.

独Find: takes time proportional to depth of p.

独Union: takes constant time, given two roots.

Proposition. Depth of any node x is at most lg n.

Pf. What causes the depth of element x to increase?

Increases by 1 when root of tree T1 containing x is linked to root of tree T2.

独The size of the tree containing x at least doubles since | T 2 | ≥ | T 1 |.

独Size of tree containing x can double at most lg n times. Why?

Weighted quick-union analysis

 T2

T1
x

1

2

4

8

16

⋮

n

lg n

in computer science, 
lg means base-2 logarithm

 33

Running time.

独Find: takes time proportional to depth of p.

独Union: takes constant time, given two roots.

 
Proposition. Depth of any node x is at most lg n.

Weighted quick-union analysis

algorithm initialize union find

quick-find n n 1

quick-union n n n

weighted quick-union n log n log n log mean logarithm,

for some constant base

number of array accesses (ignoring leading constant)

Key point. Weighted quick-union makes it possible to solve problems 
that could not otherwise be addressed.

 
 
 
 
 
 
 
 
 
 
 
Ex. [109 unions and finds with 109 elements]

独Weighted quick-union reduces run time from 30 years to 6 seconds.

独Supercomputer won’t help much; good algorithm enables solution.

 34

order of growth for m ≥ n union–find operations on a set of n elements

algorithm worst-case time

quick-find m n

quick-union m n

weighted quick-union m log n

QU + path compression m log n

weighted QU + path compression m α(n)

Summary

inverse Ackermann function

(ask Tarjan!)

fastest for percolation?

