
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 9/16/19 6:33 PM

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣ order-of-growth classifications

‣ memory usage

1.4 ANALYSIS OF ALGORITHMS

see precept 1

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣ order-of-growth classifications

‣ memory usage

1.4 ANALYSIS OF ALGORITHMS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Cast of characters

 3

Programmer needs to
develop a working solution.

Client wants to solve 
problem efficiently.

Student (you) might
play any or all of

these roles someday.

Theoretician seeks
to understand.

 4

Running time

how many times
do you have to turn

the crank?

“ As soon as an Analytical Engine exists, it will necessarily guide the future  
 course of the science. Whenever any result is sought by its aid, the question  
 will then arise—By what course of calculation can these results be arrived  
 at by the machine in the shortest time? ” — Charles Babbage (1864)

Predict performance.

 
Compare algorithms.

 
Provide guarantees.

 
Understand theoretical basis.

 
 
Primary practical reason: avoid performance bugs.

Reasons to analyze algorithms

 5

client gets poor performance because programmer 
did not understand performance characteristics

this course
(COS 226)

theory of algorithms
(COS 423)

 6

An algorithmic success story

N-body simulation.

独Simulate gravitational interactions among n bodies.

独Applications: cosmology, fluid dynamics, semiconductors, ...

独Brute force: n2 steps.

独Barnes–Hut algorithm: n log n steps, enables new research.

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear
8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

limit on
available time

Andrew Appel  
PU ’81

Q. Will my program be able to solve a large practical input?

Our approach. Combination of experiments and mathematical modeling.

The challenge

 7

Why is my program so slow ? Why does it run out of memory?

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣ order-of-growth classifications

‣ memory usage

1.4 ANALYSIS OF ALGORITHMS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

 9

Example: 3-SUM

3-SUM. Given n distinct integers, how many triples sum to exactly zero?

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Context. Related to problems in computational geometry.

% more 8ints.txt
8
30 -40 -20 -10 40 0 10 5

% java ThreeSum 8ints.txt
4

a[i] a[j] a[k] sum

30 –40 10 0

30 –20 –10 0

–40 40 0 0

–10 0 10 0

1

2

3

4

 10

3-SUM: brute-force algorithm

public class ThreeSum
{
 public static int count(int[] a)
 {
 int n = a.length;
 int count = 0;
 for (int i = 0; i < n; i++)  
 for (int j = i+1; j < n; j++) 
 for (int k = j+1; k < n; k++) 
 if (a[i] + a[j] + a[k] == 0) 
 count++;
 return count;
 }

 public static void main(String[] args)
 {
 In in = new In(args[0]);
 int[] a = in.readAllInts();
 StdOut.println(count(a));
 }
}

check each triple

for simplicity, ignore
integer overflow

Q. How to time a program?

A. Manual.

 11

Measuring the running time

% java ThreeSum 1Kints.txt

70

% java ThreeSum 2Kints.txt

% java ThreeSum 4Kints.txt

528

4039

tick tick tick

Observing the running time of a program

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick
tick tick tick tick tick tick tick tick

Q. How to time a program?

A. Automatic.

 12

Measuring the running time

public class Stopwatch

public Stopwatch() create a new stopwatch

public double elapsedTime() time since creation (in seconds)

(part of algs4.jar)

client code

public static void main(String[] args)
{
 In in = new In(args[0]);
 int[] a = in.readAllInts();
 Stopwatch stopwatch = new Stopwatch();
 StdOut.println(ThreeSum.count(a));
 double time = stopwatch.elapsedTime();
 StdOut.println("elapsed time = " + time);
}

Run the program for various input sizes and measure running time.

 13

Empirical analysis

Run the program for various input sizes and measure running time.

 14

Empirical analysis

n time (seconds) †

250 0

500 0

1,000 0.1

2,000 0.8

4,000 6.4

8,000 51.1

16,000 ?

† on a 2.8GHz Intel PU-226 with 64GB 
 DDR E3 memory and 32MB L3 cache; 
 running Oracle Java 1.7.0_45-b18 on
 Springdale Linux v. 6.5

Standard plot. Plot running time T (n) vs. input size n.

 
 
 
 
 
 
 
 
 
 
 
 
 
Hypothesis (power law). T (n) = a nb.

Questions. How to validate hypothesis? How to estimate a and b ?
 15

Data analysis

1K

.1

.2

.4

.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum.count())

log-log plotstandard plot

lgnproblem size n
2K 4K 8K

lg
(T

(n
))

ru
nn

in
g

tim
e
T(
n

)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3

Log–log plot. Plot running time T (n) vs. input size n using log–log scale.

Regression. Fit straight line through data points.

Hypothesis. The running time is about 1.006 × 10–10 × n2.999 seconds.
 16

Data analysis

slope

log2(T (n)) = 2.999 log2 n + (–33.2103)

3 orders
of magnitude

1K

.1

.2

.4

.8

1.6

3.2

6.4

12.8

25.6

51.2

Analysis of experimental data (the running time of ThreeSum.count())

log-log plotstandard plot

lgnproblem size n
2K 4K 8K

lg
(T

(n
))

ru
nn

in
g

tim
e
T(
n

)

1K

10

20

30

40

50

2K 4K 8K

straight line
of slope 3

T (n) = 2–33.2103 × n2.999

 17

Prediction and validation

Hypothesis. The running time is about 1.006 × 10–10 × n2.999 seconds.

 
 
Predictions.

独51.0 seconds for n = 8,000.

独408.1 seconds for n = 16,000.

 
 
Observations.

validates hypothesis!

n time (seconds) †

8,000 51.1

8,000 51

8,000 51.1

16,000 410.8

“order of growth” of running 
time is about n3 [stay tuned]

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, doubling the size of the input.

Hypothesis. Running time is about a nb with b = log2 ratio.
Caveat. Cannot identify logarithmic factors with doubling hypothesis.

 18

Doubling hypothesis

n time (seconds) † ratio lg ratio

250 0 –

500 0 4.8 2.3

1,000 0.1 6.9 2.8

2,000 0.8 7.7 2.9

4,000 6.4 8 3

8,000 51.1 8 3

seems to converge to a constant b ≈ 3

log2 (6.4 / 0.8) = 3.0

T (n)

T (n/2)
=

anb

a(n/2)b

= 2b

 19

Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

 
Q. How to estimate a (assuming we know b) ?

A. Run the program (for a sufficient large value of n) and solve for a.

 
 
 
 
 
 
 
 
 
Hypothesis. Running time is about 0.998 × 10–10 × n3 seconds.

n time (seconds) †

8,000 51.1

8,000 51

8,000 51.1

51.1 = a × 80003

⇒ a = 0.998 × 10–10

almost identical hypothesis
to one obtained via regression

Analysis of algorithms: quiz 1

Estimate the running time to solve a problem of size n = 96,000.

A. 39 seconds

B. 52 seconds

C. 117 seconds

D. 350 seconds

 20

n time (seconds)

1,000 0.02

2,000 0.05

4,000 0.20

8,000 0.81

16,000 3.25

32,000 13.01

 22

Experimental algorithmics

System independent effects.

独Algorithm.

独Input data.

 
System dependent effects.

独Hardware: CPU, memory, cache, …

独Software: compiler, interpreter, garbage collector, …

独System: operating system, network, other apps, …

 
 
 
 
 
 
Bad news. Sometimes difficult to get precise measurements.

Good news. Much easier and cheaper than other sciences.

determines constant a

in power law a nb

determines exponent b

in power law a nb

Algorithmic experiments are virtually free by comparison with other sciences.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bottom line. No excuse for not running experiments to understand costs.

 23

An aside

Physics
(1 experiment)

Chemistry
(1 experiment)

Biology
(1 experiment)

Computer Science
(1 million experiments)

 24

Scientific method applied to the analysis of algorithms

A framework for predicting performance and comparing algorithms.

 
Scientific method.

独Observe some feature of the natural world.

独Hypothesize a model that is consistent with the observations.

独Predict events using the hypothesis.

独Verify the predictions by making further observations.

独Validate by repeating until the hypothesis and observations agree.

 
 
Principles.

独Experiments must be reproducible.

独Hypotheses must be falsifiable.

 
 
Feature of the natural world. Computer itself.

Francis
Bacon

René
Descartes

John Stuart
Mills

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣ order-of-growth classifications

‣ memory usage

1.4 ANALYSIS OF ALGORITHMS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

 26

Mathematical models for running time

Total running time: sum of cost × frequency for all operations.

独Need to analyze program to determine set of operations.

独Cost depends on machine, compiler.

独Frequency depends on algorithm, input data.

Q. How many operations as a function of input size n ?

 27

Example: 1-SUM

int count = 0;
for (int i = 0; i < n; i++)
 if (a[i] == 0)
 count++;

operation cost (ns) † frequency

variable declaration 2/5 2

assignment statement 1/5 2

less than compare 1/5 n + 1

equal to compare 1/10 n

array access 1/10 n

increment 1/10 n to 2 n

exactly n array accesses

† representative estimates (with some poetic license)

in practice, depends on
caching, bounds checking, …

(see COS 217)

How many array accesses as a function of n?

 
 
 
 
 

A. ½ n (n − 1)

B. n (n − 1)

C. 2 n 2

D. No idea.

Analysis of algorithms: quiz 2

 28

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

Q. How many operations as a function of input size n ?

1/4 n2 + 13/20 n + 13/10 ns
to

3/10 n2 + 3/5 n + 13/10 ns  

(tedious to count exactly)

 30

Example: 2-SUM

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

operation cost (ns) frequency

variable declaration 2/5 n + 2

assignment statement 1/5 n + 2

less than compare 1/5 ½ (n + 1) (n + 2)

equal to compare 1/10 ½ n (n − 1)

array access 1/10 n (n − 1)

increment 1/10 ½ n (n + 1) to n2

0 + 1 + 2 + . . . + (n � 1) =
1

2
n(n � 1)

=

�
n

2

�

Cost model. Use some basic operation as a proxy for running time.

 31

Simplification 1: cost model

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

operation cost (ns) frequency

variable declaration 2/5 n + 2

assignment statement 1/5 n + 2

less than compare 1/5 ½ (n + 1) (n + 2)

equal to compare 1/10 ½ n (n − 1)

array access 1/10 n (n − 1)

increment 1/10 ½ n (n + 1) to n2

cost model = array accesses 
(we assume compiler/JVM do not
optimize any array accesses away!)

0 + 1 + 2 + . . . + (n � 1) =
1

2
n(n � 1)

=

�
n

2

�

独Estimate running time (or memory) as a function of input size n.

独Ignore lower-order terms.

 
Ex 1. ⅙ n3 + 20 n + 16 ~ ⅙ n3

Ex 2. ⅙ n3 + 100 n 4/3 + 56 ~ ⅙ n3

Ex 3. ⅙ n3 - ½ n2 + ⅓ n ~ ⅙ n3

 

 

 

 

Rationale.

独When n is large, lower-order terms are negligible.

独When n is small, we don’t care.

 
Technical definition. f(n) ~ g(n) means

 32

Simplification 2: tilde notation

discard lower-order terms 
(e.g., n = 1,000: 166.67 million vs. 166.17 million)

lim
n��

f(n)

g(n)
= 1

Leading-term approximation

n 3/6

n (n! 1)(n! 2)/6

166,167,000

1,000

166,666,667

n

独Estimate running time (or memory) as a function of input size n.

独Ignore lower order terms.

 33

Simplification 2: tilde notation

operation frequency tilde notation

variable declaration n + 2 ~ n

assignment statement n + 2 ~ n

less than compare ½ (n + 1) (n + 2) ~ ½ n2

equal to compare ½ n (n − 1) ~ ½ n2

array access n (n − 1) ~ n2

increment ½ n (n + 1) to n 2 ~ ½ n2 to ~ n2

Q. Approximately how many array accesses as a function of input size n ?
 
 
 
 
 
 
 
 
A. ~ n2 array accesses.

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 if (a[i] + a[j] == 0)
 count++;

 34

Example: 2-SUM

“inner loop”

0 + 1 + 2 + . . . + (n � 1) =
1

2
n(n � 1)

=

�
n

2

�

Q. Approximately how many array accesses as a function of input size n ?
 
 
 
 
 
 
 
 
A. ~ ½ n 3 array accesses.

 
 
 
 
 
Bottom line. Use cost model and tilde notation to simplify counts.

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = j+1; k < n; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;

 35

Example: 3-SUM

“inner loop”

�
n

3

�
=

n(n � 1)(n � 2)

3!

� 1

6
n3

see COS 340

 36

Estimating a discrete sum

Q. How to estimate a discrete sum?

A1. Take a discrete mathematics course (COS 340).

 37

Estimating a discrete sum

Q. How to estimate a discrete sum?

A2. Replace the sum with an integral; use calculus!

 
 
Ex 1. 1 + 2 + … + n.
 
 
Ex 2. 1 + 1/2 + 1/3 + … + 1/n.
 
 
Ex 3. 3-sum triple loop.

 
 
Ex 4. 1 + ½ + ¼ + ⅛ + …

��

i=0

�
1

2

�i

= 2

� �

x=0

�
1

2

�x

dx =
1

ln 2
� 1.4427

integral trick
doesn’t always work!

n�

i=1

i �
� n

x=1
x dx � 1

2
n2

n�

i=1

1

i
�

� n

x=1

1

x
dx � ln n

n�

i=1

n�

j=i

n�

k=j

1 �
� n

x=1

� n

y=x

� n

z=y
dz dy dx � 1

6
n3

 38

Estimating a discrete sum

Q. How to estimate a discrete sum?

A3. Use Maple or Wolfram Alpha.

https://www.wolframalpha.com

How many array accesses as a function of n ?
 

 
 
 

A. ~ n2 log2 n

B. ~ 3/2 n2 log2 n

C. ~ 1/2 n3

D. ~ 3/2 n3

Analysis of algorithms: quiz 3

 39

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = 1; k < n; k = k*2)
 if (a[i] + a[j] >= a[k])
 count++;

~ 3 log2 n array accesses

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣ order-of-growth classifications

‣ memory usage

1.4 ANALYSIS OF ALGORITHMS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

Definition. If f (n) ~ c g(n) for some constant c > 0, then the order of growth  
of f (n) is g(n).

独Ignores leading coefficient.

独Ignores lower-order terms.  

Ex. The order of growth of the running time of this code is n3.

 
 
 
 
 
 
 
 
Typical usage. Mathematical analysis of running times.

Common order-of-growth classifications

 41

int count = 0;
for (int i = 0; i < n; i++)
 for (int j = i+1; j < n; j++)
 for (int k = j+1; k < n; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;

where leading coefficient
depends on machine, compiler, JVM, ...

Good news. The set of functions 
 1, log n, n, n log n, n2, n3, and 2n

suffices to describe the order of growth of most common algorithms.

Common order-of-growth classifications

 42

1K

T

2T

4T

8T

64T

512T

logarithmic

ex
po

ne
nt

ia
l

constant

lin
ea

rit
hmic

lin
ea

r

qu
ad

ra
tic

cu
bi

c

2K 4K 8K 512K

100T

200T

500T

logarithmic

exponential

constant

size

size

lin
ea

rit
hmic

lin
ea

r

100K 200K 500K
ti

m
e

ti
m

e

Typical orders of growth

log-log plot

standard plot

cubic
quadratic

Common order-of-growth classifications

 43

order of
growth name typical code framework description example T(2n) / T(n)

1 constant a = b + c; statement
add two
numbers 1

log n logarithmic
while (n > 1) 

{ n = n/2; ... }
divide
in half

binary search ~ 1

n linear
for (int i = 0; i < n; i++)

 { ... }
single
loop

find the
maximum 2

n log n linearithmic see mergesort lecture
divide and
conquer

mergesort ~ 2

n2 quadratic
for (int i = 0; i < n; i++)

 for (int j = 0; j < n; j++)
 { ... }

double
loop

check all
pairs 4

n3 cubic

for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)

 for (int k = 0; k < n; k++)
 { ... }

triple
loop

check all
triples 8

2n exponential see combinatorial search lecture
exhaustive

search
check all
subsets 2n

 44

Binary search

Goal. Given a sorted array and a key, find index of the key in the array?

 
Binary search. Compare key against middle entry.

独Too small, go left.

独Too big, go right.

独Equal, found.

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 45

Binary search: implementation

Trivial to implement?

独First binary search published in 1946.

独First bug-free one in 1962.

独Bug in Java’s Arrays.binarySearch() discovered in 2006.

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html

Invariant. If key appears in array a[], then a[lo] ≤ key ≤ a[hi].

 public static int binarySearch(int[] a, int key)
 {
 int lo = 0, hi = a.length - 1;
 while (lo <= hi)
 {
 int mid = lo + (hi - lo) / 2;
 if (key < a[mid]) hi = mid - 1;
 else if (key > a[mid]) lo = mid + 1;
 else return mid;
 }
 return -1;
 }

 46

Binary search: Java implementation

one “3-way compare”

why not mid = (lo + hi) / 2 ?

 47

Binary search: mathematical analysis

Proposition. Binary search uses at most 1 + log2 n key compares to search

in a sorted array of length n.

 
Def. T (n) = max # key compares to search a sorted subarray of length ≤ n.

 
Binary search recurrence. T (n) ≤ T (n / 2) + 1 for n > 1, with T (1) = 1.

 
 
Pf sketch. [assume n is a power of 2]

left or right half
(floored division)

possible to implement with one
2-way compare (instead of 3-way)

 T (n) ≤ T (n / 2) + 1 [given]

≤ T (n / 4) + 1 + 1 [apply recurrence to first term]

≤ T (n / 8) + 1 + 1 + 1 [apply recurrence to first term]

⋮

≤ T (n / n) + 1 + 1 + … + 1 [stop applying, T(1) = 1]

= 1 + log2 n log2 n

 48

WHY ARE SEWER ACCESS COVERS ROUND?

Zermatt, SwitzerlandNew York, New York Okayama, Japan

 49

THE 3-SUM PROBLEM

3-SUM. Given n distinct integers, find three such that a + b + c = 0.

 
 
Version 0. n 3 time, n space.

Version 1. n 2 log n time, n space.

Version 2. n 2 time, n space. 

 
Note. For full credit, the running time should be in the worst case.

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ running time (experimental analysis)

‣ running time (mathematical models)

‣ order-of-growth classifications

‣ memory usage

1.4 ANALYSIS OF ALGORITHMS

https://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
https://algs4.cs.princeton.edu

 52

Basics

Bit. 0 or 1.

Byte. 8 bits.

Megabyte (MB). 1 million or 220 bytes.

Gigabyte (GB). 1 billion or 230 bytes.

 
 
 
64-bit machine. We assume a 64-bit machine with 8-byte pointers.

some JVMs “compress” ordinary object
pointers to 4 bytes to avoid this cost

NIST most computer scientists

 53

Typical memory usage for primitive types and arrays

type bytes

boolean 1

byte 1

char 2

int 4

float 4

long 8

double 8

primitive types

type bytes

boolean[] 1n + 24

int[] 4n + 24

double[] 8n + 24

one-dimensional array (length n)

type bytes

boolean[][] ~ 1 m n

int[][] ~ 4 m n

double[][] ~ 8 m n

two-dimensional array (m-by-n)

wasteful

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.

 54

Typical memory usage for objects in Java

public class Integer
{
 private int x;
...
}

Typical object memory requirements

object
overhead

public class Node
{
 private Item item;
 private Node next;
...
}

public class Counter
{
 private String name;
 private int count;
...
}

24 bytesinteger wrapper object

counter object

node object (inner class)

32 bytes

int
value

int
value

String
reference

public class Date
{
 private int day;
 private int month;
 private int year;
...
}

date object

x

object
overhead

name

count

40 bytes

references

object
overhead

extra
overhead

item

next

32 bytes

int
values

object
overhead

year
month
day

padding

padding

padding

4 bytes (int)

4 bytes (int)

16 bytes (object overhead)

32 bytes

4 bytes (int)

4 bytes (padding)

Total memory usage for a data type value:

独Primitive type: 4 bytes for int, 8 bytes for double, …

独Object reference: 8 bytes.

独Array: 24 bytes + memory for each array entry.

独Object: 16 bytes + memory for each instance variable.

独Padding: round up to multiple of 8 bytes.

 
 
 
Note. Depending on application, we often want to count the memory 
for any referenced objects (recursively).

 55

Typical memory usage summary

+ 8 extra bytes per inner class object
(for reference to enclosing class)

“deep memory”

Analysis of algorithms: quiz 4

How much memory does a WeightedQuickUnionUF use as a function of n ?  

A. ~ 4 n bytes

B. ~ 8 n bytes

C. ~ 4 n 2 bytes

D. ~ 8 n 2 bytes

 56

public class WeightedQuickUnionUF
{
 private int[] parent;
 private int[] size;
 private int count;

 public WeightedQuickUnionUF(int n)
 {
 parent = new int[n];
 size = new int[n];
 
 count = 0;
 for (int i = 0; i < n; i++)
 parent[i] = i;
 for (int i = 0; i < n; i++)
 size[i] = 1;
 }
 ...
}

Turning the crank: summary

Empirical analysis.

独Execute program to perform experiments.

独Assume power law.

独Formulate a hypothesis for running time.

独Model enables us to make predictions.

 
Mathematical analysis.

独Analyze algorithm to count frequency of operations.

独Use tilde notation to simplify analysis.

独Model enables us to explain behavior.

 
Scientific method.

独Mathematical model is independent of a particular 
system; applies to machines not yet built.

独Empirical analysis is necessary to validate 
mathematical models and to make predictions.

 58

�lg n��

h=0

�n/2h+1� h � n

