
COS 226 Algorithms and Data Structures Spring 2012

Midterm Solutions

1. Analysis of algorithms.

(a) 3
800,000,000N

3

(b) N3

2. Data structure and algorithm properties.

(a) E Min height of a binary heap with N keys.

E Max height of a binary heap with N keys.

C Min height of a 2-3 tree with N keys.

E Max height of a 2-3 tree with N keys.

E Min height of left-leaning red-black BST with N keys.

F Max height of left-leaning red-black BST with N keys.

A Min height of a weighted quick union tree with N items.

E Max height of a weighted quick union tree with N items.

A. ∼ 1

B. ∼ 1
2 lgN

C. ∼ log3N

D. ∼ lnN

E. ∼ lgN

F. ∼ 2 lgN

G. ∼ 2 lnN

H. ∼ N

(b) insertion sort and top-down mergesort are parsimonious

Selection sort counterexample: C B A. The keys B and C get compared twice, once in first
iteration and once in second iteration.

Heapsort counterexample: C B A. The keys A and B get compared twice, once in the heap
construction phase (when sinking C) and once in the sortdown phase (when sinking A

after C and A are exchanged).

3. Data structures.

(a) • Best case: ∼ 2N
When the array is full.

• Worst case: ∼ 8N
When the array is one-quarter full.

(b)

operation description time

charAt(int i) return the ith character in sequence 1

deleteCharAt(int i) delete the ith character in the sequence N

append(char c) append c to the end of the sequence 1

set(int i, char c) replace the ith character with c 1

1



4. 8 sorting and shuffling algorithms.

7 9 3 5 4 2 6 8

5. Red-black BSTs.

(a) U V W X

(b) P S Y

(c)

E N G

rotateLeft() 1 1 1

rotateRight() 0 0 3

flipColors() 1 0 3

6. Hashing.

(a)
0 1 2 3 4 5 6

G D B F E A C

(b) I. Possible.
Consider the order F D B G E C A.

II. Impossible.
No key is in the correct position.

III. Impossible.
We can assume B and G were inserted first since they are in correct position. But
then third key inserted is guaranteed to be in correct position.

7. Comparing two arrays of points.

(a) • Sort a[] using heapsort (using the point’s natural order).

• For each point b[j], use binary search to search for it in the sorted array a[],
incrementing a counter if found.

(b) N logM .
The running time is M logM for the sort and N logM for the N binary searches.
Since N ≥ M , the latter term is the bottleneck.

(c) 1.
Both heapsort and binary search use at most a constant amount of extra space.

2



8. Randomized priority queue.

• sample(): Pick a random array index r (between 1 and N) and return the key a[r].

• delRandom():

– Select: pick a random array index r (between 1 and N) and save away the key a[r],
to be returned.

– Delete: exchange a[r] and a[N] and decrement N.

– Restore heap order invariants: call sink(r) and swim(r) to fix up any heap order
violation at r. Note that a[N] in the original heap need not be the largest key, so
the call to swim(r) is necessary.

public Key sample() {

int r = 1 + StdRandom.uniform(N); // between 1 and N

return a[r];

}

public Key delRandom() {

int r = 1 + StdRandom.uniform(N); // between 1 and N

Key key = a[r]; // save away

exch(r, N--); // to make deleting easy

sink(r); // if a[N] was too big

swim(r); // if a[N] was too small

a[N+1] = null; // avoid loitering

return key;

}

3


