
COS 226 Algorithms and Data Structures Spring 2015

Final

This exam has 14 questions worth a total of 100 points. You have 180 minutes. The exam is closed book, except
that you are allowed to use a one page cheatsheet (8.5-by-11, both sides, in your own handwriting). No calculators
or other electronic devices are permitted. Give your answers and show your work in the space provided.Write
and sign the Honor Code pledge just before turning in the exam.

This exam is preprocessed by computer: if you use pencil (and eraser), write darkly; write all
answers inside the designated rectangles; do not write on the corner marks.

“I pledge my honor that I have not violated the Honor Code during this examination.”

Name:

netID:

Room:

P01 P01A P02 P03 P04 P05 P05A P06 P06A P06B P07
Precept:

Problem Score Problem Score
0 7
1 8
2 9
3 10
4 11
5 12
6 13

Sub 1 Sub 2

Total

P01 Th 11 Andy Guna
P01A Th 11 Shivam Agarwal
P02 Th 12:30 Andy Guna
P03 Th 1:30 Swati Roy

P04 F 10 Robert MacDavid
P05 F 11 Robert MacDavid
P05A F 11 Shivam Agarwal
P06 F 2:30 Jérémie Lumbroso
P06A F 2:30 Josh Wetzel
P06B F 2:30 Ryan Beckett
P07 F 3:30 Jérémie Lumbroso

0. Initialization (1 point)

In the space provided on the front of the exam, write your name and Princeton netID; mark your precept number;
write the name of the room in which you are taking the exam; and write and sign the honor code.

1. Analysis of Algorithms (8 points)

(a) You observe the following memory usage for a program with an input of size N .

N memory

1,000 2.1 MB

2,000 8.2 MB

4,000 32.4 MB

8,000 128.8 MB

Estimate the memory usage of the program (in megabytes) on an input of size 24,000. Your answer should
be accurate to within 5%.

megabytes

(b) Consider the following implementation of a trie data type:

public class TrieST<Value> {
private static final int R = 256;
private Node root; // root of trie
private int N; // number of nodes in the trie

private static class Node {
private Object val;
private Node[] next = new Node[R];

}
// ...

}

Using the 64-bit memory cost model from lecture and the textbook, how much memory (in bytes) does a
TrieST object use to store M key-value pairs in N nodes as a function of N and M?

Use tilde notation to simplify your answer. Do not include the memory for the values themselves but do
include all other memory (including references to values). Recall that with a static nested class, there is no
8 byte inner class overhead.

∼ bytes

2. Graph Search (6 points)

Perform a depth-first search in the digraph below, starting from vertex 0. Assume the adjacency lists are in sorted
order: for example, when iterating over the edges pointing from 3, process the edge 3→ 2 before either 3→ 7 or
3→ 8.

Final, Spring 2015

76

21

9

5

0

4

8

3

postorder:
preorder:

run DFS from here

(a) List all vertices in reverse postorder.

(b) List all vertices in preorder.

0

0

3. Minimum Spanning Tree (8 points)

The following diagram shows the set of edges (in thick black lines) selected at some intermediate step of an MST
algorithm.

Final, Fall 2015

GF

BA

I

D

H

C

80140100

130

90 110

70

120

50

y

z

x

y <= 80

x <= 110

can infer (Kruskal)

z >= 90

60

partial MST

y <= 80

x <= 130

can infer (Prim A)
in the MST

(a) Which of the following could be the weights of edges x, y, and z, respectively, at some intermediate step of
Kruskal’s algorithm? Mark all that apply.

55 65 75 85 95 105 115 125 135 145
x

y

z

(b) Which of the following could be the weights of edges x, y, and z, respectively, at some intermediate step of
Prim’s algorithm, starting from vertex A? Mark all that apply.

55 65 75 85 95 105 115 125 135 145
x

y

z

4. Maximum Flow (10 points)

Consider the following flow network and feasible flow f from the source vertex A to the sink vertex J .

Final, Spring 2015

8 / 8
23 / 34

0 / 6

4 / 4

32 / 321 / 1 GF

flow capacity

A

3 / 8
28 /

28
9 / 9

9 / 9

3 / 30 / 5 I

E

J

4 / 78 / 8

1 / 6

C

augmenting path: A-G-B-H-I-D-J
bottleneck capacity = 3
min cut: { A, B, F, G, H, I }
max flow value = 35

4 / 6

B

H

D

20 / 32

source

target

(a) Mark the value of the flow f .

0 10 20 22 24 26 28 30 32 34 36 38 40

(b) Starting from the flow f , perform one iteration of the Ford-Fulkerson algorithm. Mark all vertices that are
on the (unique) augmenting path.

A B C D E F G H I J

(c) Mark the bottleneck capacity of the augmenting path.

0 1 2 3 4 5 6 7 8 9

(d) Mark the vertices on the source side of a minimum cut.

A B C D E F G H I J

(e) Mark the edges below, for which doubling the capacity would increase the value of the maximum flow.

A → G B → C D → I G → H I → J H → D

5. String Sorting Algorithms (7 points)

The column on the left is the original input of 24 strings to be sorted; the column on the right are the strings
in sorted order; the other 7 columns are the contents at some intermediate step during one of the 3 radix sorting
algorithms listed below.

Match up each column with the corresponding sorting algorithm. You may use a number more than once.

Hint : think about algorithm invariants. Do not trace code.

0 lust bole bone bole leaf bone lava cafe bole
1 rust bone buff fawn teal bole herb sage bone
2 fawn buff bole flax pear buff sand palm buff
3 pine cafe cafe cafe flax cafe gold sand cafe
4 sand herb dust buff gray dust pine lava dust
5 cafe dust fawn herb puce fawn cafe fawn fawn
6 pear gray flax dust cafe flax puce leaf flax
7 puce flax gray gray buff gray sage teal gold
8 sage gold gold bone sage gold rose pear gray
9 herb fawn herb gold gold herb bone herb herb

10 dust leaf lust leaf bole lust lime lime lava
11 gray lava lava lava palm lava bole pine leaf
12 rose lime leaf lime lime leaf buff flax lime
13 gold lust lime lust sand lime leaf plum lust
14 bone rose pine rose pine pine teal gold palm
15 buff sage pear sage bone pear plum bole pear
16 lava plum puce plum herb puce palm bone pine
17 plum puce plum puce rose plum fawn rose plum
18 leaf pear palm pear lust palm pear gray puce
19 lime sand rust sand rust rust lust puce rose
20 flax pine rose pine dust rose rust buff rust
21 bole teal sand teal plum sand dust lust sage
22 teal palm sage palm lava sage flax rust sand
23 palm rust teal rust fawn teal gray dust teal

---- ---- ---- ---- ---- ---- ---- ---- ----

0 4

(0) Original input

(1) LSD radix sort

(2) MSD radix sort

(3) 3-way radix quicksort (no shuffle)

(4) Sorted

6. Substring Search (8 points)

(a) Consider the Knuth-Morris-Pratt DFA for the following string of length 8:

C C A C C C A B

Complete the last three columns of this partially-completed DFA table. (Feel free to use the partially-
completed DFA diagram below for scratch work.)

0 1 2 3 4 5 6 7

A 0 0 3 0 0

B 0 0 0 0 0

C 1 2 2 4 5

Final, Spring 2015 KMP

0 1 5 6 7 83 42

0 1 5 6 7 83 42C C A C C

B

0 1

A, B

A, B

A, B

C

A, B

(b) What is the Rabin-Karp hash function of text[4..11] over the decimal alphabet with R = 10, using the
modulus Q = 157?

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
--
text[j] 6 1 3 2 6 9 ? ? ? 7 7 8 4 4 2 9 5 1 9 6

The digits labeled with a question mark (?) are suppressed. Assume that the hash function of text[3..10]
is 115 and note that 10000000 (mod 157) = 42.

7. Regular Expressions (6 points)

Consider the NFA that results from applying the RE-to-NFA construction algorithm from lecture and the textbook
to the regular expression (A (B C * | D) *). The states and match transitions are shown below, but
the ε-transitions are suppressed.

Final, Spring 2015

((* | D) *)

0 2 3 4 5 6 7 8 9 10 11

B CA

1

((* | D) *)

0 2 3 4 5 6 7 8 9 10 11

B CA

1

(a) Which of the following are edges in the ε-transition digraph? Mark all that apply.

0→ 1 0→ 8 0→ 9 0→ 10 0→ 11

2→ 6 2→ 7 2→ 8 2→ 9 2→ 10

4→ 2 4→ 5 4→ 6 4→ 7 4→ 8

5→ 4 5→ 5 5→ 6 5→ 7 5→ 9

6→ 2 6→ 7 6→ 8 6→ 9 6→ 10

9→ 2 9→ 6 9→ 8 9→ 10 9→ 11

(b) Suppose that you simulate the NFA with the following input:

A B C C C B B C B B B

In which states could the NFA be? Mark all that apply.

0 1 2 3 4 5 6 7 8 9 10 11

8. LZW Compression (5 points)

Expand the following LZW-encoded sequence of 10 hexadecimal integers.

42 42 41 43 81 43 83 85 87 80

Assume the original encoding table consists of all 7-bit ASCII characters and uses 8-bit codewords. Recall that
codeword 80 is reserved to signify end of file.

(a) What was the encoded message?

(b) Which of the substrings below are in the LZW dictionary upon termination of the algorithm? Mark all that
apply.

AC ACB BA BB BC BBA BBC BAC BCA CA CAC CB CBB

B

For reference, above is the hexadecimal-to-ASCII conversion table from the textbook.

9. Burrows-Wheeler Transform (6 points)

(a) What is the Burrows-Wheeler transform of the following?

B A C B C D B A

(b) What is the Burrows-Wheeler inverse transform of the following?

5
B A D A B B D C

COS 226 FINAL, FALL 2014 7

5. Burrows-Wheeler transform. (8 points)

(a) What is the Burrows-Wheeler transform of the following?

A D D B D B C A

Feel free to use this grid for scratch work.

(b) What is the Burrows-Wheeler inverse transform of the following?

2

C A D D A B C C

Feel free to use this grid for scratch work.

COS 226 FINAL, FALL 2014 7

5. Burrows-Wheeler transform. (8 points)

(a) What is the Burrows-Wheeler transform of the following?

A D D B D B C A

Feel free to use this grid for scratch work.

(b) What is the Burrows-Wheeler inverse transform of the following?

2

C A D D A B C C

Feel free to use this grid for scratch work.

Feel free to use both of these grids for scratch work.

10. Properties of Problems (9 points)

Mark whether each of the following statements are True or False.

(a) Reductions. Suppose that Problem X poly-time reduces to Problem Y .

True False
If X can be solved in polynomial time, then so can Y .

If Y can be solved in quadratic time, then X can be solved in polynomial time.

If X cannot be solved in quadratic time, Y cannot be solved in polynomial time.

If Y cannot be solved in polynomial time, then neither can X.

If Y is NP-complete, then so is X.

(b) Minimum spanning trees. Let G be any simple graph (no self-loops or parallel edges) with positive and
distinct edge weights.

True False
Any MST of G must include the edge of minimum weight.

Any MST of G must exclude the edge of maximum weight.

The MST of G is unique.

If the weights of all edges incident to any vertex v are increased by 17, then any MST in G
is an MST in the modified edge-weighted graph.

If the weights of all edges in G are increased by 17, then any MST in G is an MST in the
modified edge-weighted graph.

(c) Shortest Paths. Let G be any simple digraph (no self-loops or parallel edges) with positive and distinct
edge weights.

True False
Any shortest path from s to t in G must include the edge of minimum weight.

Any shortest path from s to t in G must exclude the edge of maximum weight.

The shortest path from s to t in G is unique.

If the weights of all edges leaving s are increased by 17, then any shortest path from s to t
in G is a shortest path in the modified edge-weighted digraph.

If the weights of all edges in G are increased by 17, then any shortest path from s to t in G
is a shortest path in the modified edge-weighted digraph.

11. Properties of Algorithms (9 points)

(a) Consider the execution of depth-first search on a digraph G from vertex s, beginning with the function call
dfs(G, s). Suppose that dfs(G, v) is called during the depth-first search. Which of the following
statements can you infer at the moment when dfs(G, v) is called? Mark all that apply.

G contains a directed path from s to v.
The function-call stack contains a directed path from s to v.
The edgeTo[] array contains a directed path from s to v.
If G includes an edge v → w for which w has been previously marked, then G has a directed cycle

containing v.
If G includes an edge v → w for which w is currently a vertex on the function-call stack, then G has a

directed cycle containing v.

(b) Consider the execution of breadth-first search on a digraph G, starting from vertex s. Suppose that vertex v
is removed from the queue during the breadth-first search. Which of the following statements can you infer
at the moment when v is removed from the queue? Mark all that apply.

G contains a directed path from s to v.
The queue contains a directed path from s to v.
The edgeTo[] array contains a directed path from s to v.
If G includes an edge v → w for which w has been previously marked, then G has a directed cycle

containing v.
If G includes an edge v → w for which w is currently a vertex on the queue, then G has a directed cycle

containing v.

(c) Which of the following statements about string-processing algorithms are true?
Mark all that apply.

Both MSD radix sort and LSD radix sort are stable sorting algorithms.
The shape of an R-way trie depends not only on the keys that were inserted but also on the order in

which they were inserted.
The shape of a ternary search tree depends not only on the keys that were inserted but also on the

order in which they were inserted.
Searching for an M -character pattern in an N -character text takes time proportional to M in the best

case and M+N in the worst case using the Boyer-Moore algorithm (with the mismatch character heuristic
only).

Building the NFA corresponding to an M -character regular expression (using the algorithm from the
textbook and lecture) takes time proportional to M in the worst case.

12. Reductions (8 points)

Consider the following two graph-processing problems:

• Shortest-Path. Given an edge-weighted digraph G with nonnegative edge weights, a source vertex s, and
a destination vertex t, find a shortest path from s to t.

• Shortest-Princeton-Path. Given an edge-weighted digraph G with nonnegative edge weights, a source
vertex s, a destination vertex t, and with each vertex colored black or orange, find a shortest path from s to
t that uses at most one orange vertex. Assume that the source vertex is not orange.

In the edge-weighted digraph below, the shortest path from A to F is A → D → E → B → C → F (weight 15)
but the the shortest Princeton path is A→ B → C → F (weight 18).Final, Spring 2015

F

A B C

D

weight

2

9

99

5107

destination

source

E

1

4

3

4

0 2

1

weight

2

9

99

10

7 destination

source

3

1 3

(a) Give a linear-time reduction from Shortest-Path to Shortest-Princeton-Path. To demonstrate your
reduction, draw the edge-weighted digraph (labeling the source and destination vertices and coloring each
vertex black or orange) that you would construct to solve the Shortest-Path instance above.

(b) Give a linear-time reduction from Shortest-Princeton-Path to Shortest-Path. To demonstrate your
reduction, draw the edge-weighted digraph (labeling the source and destination vertices) that you would
construct to solve the Shortest-Princeton-Path instance on the facing page.

13. Algorithm Design (9 points)

(a) Design a data structure that supports the following API:

99

Streaming sum (Final, Spring 2015)

public class StreamingSumpublic class StreamingSumpublic class StreamingSum

public StreamingSum() create an empty data structure

public void add(int weight) add the weight to the data structure

public void remove() remove the least-recently added weight

public int sum() sum of weights in data structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

A A A B

A A A B A B A B B A B A A A B A B B B A B A B A B A B B

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3

19
22

21 18
15

18

text string s

weights

query string t

Here is an example,

StreamingSum ss = new StreamingSum();
ss.add(1); // 1 (add 1)
ss.add(2); // 1 2 (add 2)
ss.add(3); // 1 2 3 (add 3)
ss.sum(); // 1 2 3 (return 6)
ss.add(4); // 1 2 3 4 (add 4)
ss.remove(); // 2 3 4 (remove 1)
ss.sum(); // 2 3 4 (return 9)

Each operation should take constant time in the worst case.

Declare the instance variables for your StreamingSum data type. You may declare nested classes but you
may not use higher-level data types (such as those in algs4.jar or java.util).

(b) Given a binary string s with integer weights associated with each character and a query string t, find a
minimum weight occurrence of t in s (or report that t does not appear as a substring in s). The weight of
an occurrence is equal to the sum of the weights of the corresponding characters in the text.

For example, if s = AAABABABBABAAABABBBABABABABABB and t = ABAB, and the weights
are given as below, then the minimum weight occurrence of t in s starts at index 21.

99

Streaming sum (Final, Spring 2015)

public class StreamingSumpublic class StreamingSumpublic class StreamingSum

public StreamingSum() create an empty data structure

public void add(int weight) add the weight to the data structure

public void remove() remove the least-recently added weight

public int sum() sum of weights in data structure

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

A B A B

A A A B A B A B B A B A A A B A B B B A B A B A B A B B

3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3

19
22

21 18
15

18

text string s

weights

query string t

Your algorithm should run in time proportional to N + M , where N and M are the lengths of s and t,
respectively. Your answer will be graded on correctness, efficiency, clarity, and conciseness.

